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GENERAL INTRODUCTION 

Ionization and dissociation are usually the predominant processes 

when a molecule absorbs a vacuum ultraviolet (VUV) photon. The measure­

ment of the ionization cross sections for a particular ionizing channel 

with variable photon excitation energies is the subject of photoioniza-

tion experiments. Many of the most accurate ionization energies (IE) 

and appearance energies (AE) of fragment ions were obtained by the pho-

toionization method. Reliable thermochemical information can be deduced 

from these measurements. This technique has proved to be a useful tool 

in the elucidation of the interaction of Rydberg states with continuum 

states. Information on potential energy surfaces can be explored by 

1 2 
photoionization studies as well. ' 

The resolution achieved in photoionization experiments has been 

limited mainly by the low VUV light intensity which is partly due to the 

low reflectivity of diffraction gratings in this region. In order to 

circumvent this difficulty, conventional photoionization studies usually 

1 3 
employ the gas-cell method with fairly high pressure in the gas-cell. ' 

Unfortunately, the obtainable resolution was often limited by the ro­

tational or low-frequency vibrational excitations of molecules at a given 

temperature. For gases with low condensation temperatures such as , 

N2, 0̂ , the hot-band effects can be overcome by cooling the sample gas 

4 
in cell to lower temperatures. Obviously, this method is not applica­

ble to gas with high condensation temperatures. 

An alternative to the gas-cell method is the supersonic molecular 
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beam technique. A supersonic molecular beam involves the expansion of 

a gas or the vapor of a liquid or solid at high pressure through a 

small orifice into an evacuated region at lower pressure. The molecules 

undergo many collisions during the expansion. The primary effect of the 

expansion is the conversion of random translational, rotational, and vi­

brational energies of the molecules into directed mass flow, and this 

causes the lowering of the translational, vibrational and rotational 

temperatures. In most cases, the translational temperature will reach 

nearly 0 K. Rotational and vibrational temperatures as low as 0.17 K 

and 20-50 K, respectively, have been reported for polyatomic molecules 

by this method.̂  Thus, in comparison to gas-cell experiments, super­

sonic expansion of the target gas can greatly improve the resolution 

while still providing a high constant flux of molecules at the ioniza­

tion region. Further, if the molecule is sampled downstream in a col-

lisionless environment, the secondary process encountered in gas-cell 

photoionization studies can be eliminated. For these reasons, the 

molecular beam method has been adapted for use in the present photo­

ionization mass spectrometric studies. The advantages of this method 

have been demonstrated in a series of molecular-beam photoionization 

 ̂J. 6-27 studies. 

Charge transfer reaction is one of the most interesting processes 

when an ion collides with a neutral atom or molecule. When such a 

reaction is exothermic, it is usually a dominant product channel in 

the outcome of ion-neutral interactions. Because of their large cross 
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sections, charge transfer reactions play a significant role in relaxa­

tion processes and reaction kinetics in ionized gases. Although the 

concentrations of ions in flames are low, thermal charge exchange proc­

esses are possible pathways for the conversion of ions into free radi­

cal chain carriers. Therefore, the microscopic understanding of these 

phenomena is of particular interest to gas discharges, lasers, flames, 

and controlled thermonuclear fusion research. 

At the present stage, the theory of charge exchange between atomic 

ions and atoms is quite well-developed.̂  ̂ However, the detailed 

theoretical understanding of charge transfer processes involving molecu­

lar ions, in which energy can be transferred to or from internal motions 

of molecules and/or molecular ions, is still in a rudimentary state. 

The symmetric charge transfer reaction has been the subject of many 

33 42-47 
theoretical studies. ' The simplicity of this reaction makes it 

an important system for the detailed investigation of the dynamics of 

charge transfer processes. 

The symmetric charge transfer reaction 

HÎ(v') + H,(v" = 0) ̂  H_(v') + H!"(V") (1) 
Z: O Z O / Z 

has been chosen for the first study partly because of the availability 

43-47 
of several theoretical calculations on this system. This reac­

tion was not observed in the state-selected studies of Koyano and 

Tonakâ  ̂and Anderson et al.̂  ̂using the gas-cell arrangement. The 

relative total cross sections for Reaction (1) as a function of the 
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vibrational energy distribution of reactant ions measured at 

collision energy  ̂= 215 eV was reported by Chupka.̂  ̂ The only 

reported vibrational-state-selected total cross sections measurements 

for Reaction (1) was performed by Campbell et al.̂  ̂using photoion-

photoelectron coincidence (PIPECO) method and effusive sources. 

The relative total charge transfer cross sections for Reaction (1) 

were found to vary with v̂  in an abrupt way. 

The work of Chupka and co-workerŝ  ̂ shows that because of the 

dominance of autoionization with Av = -1 over predissociation, 

at vibrational states v̂  = 0-5 can be prepared with high purity by the 

simple photoionization. This requires the photoionization at high reso­

lution to select specific autoionization peaks and to minimize the con­

tribution from direct photoionization processes. The fact that auto­

ionization processes are much stronger than direct ionization in H2 

allows the preparation of Ĥ Cv̂  = 0-5) at higher intensities than can 

be prepared by the PIPECO method. 

We have successfully combined the high resolution photoionization 

mass spectrometric method and the crossed ion-neutral beam technique 

to examine the internal and kinetic energy effect on the total cross 

sections for symmetric charge transfer reactions and Ar + Ar. 

By using the cross ion-neutral supersonic beam technique, we have not 

only minimized the secondary reactions of the charge transfer ions 

with background neutral molecules to form + H at low kinetic 

energies, but also attained higher kinetic energy resolutions as compared 
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to using an ion beam-gas cell experiment arrangement. We have also 

developed a charge transfer detector to probe the vibrational state 

distribution of the product ions in reaction and the spin-

orbit state distribution of the product Ar"*" ions in Ar"*" + Ar reaction. 

Explanation of Thesis Format 

This thesis consists of six sections which can be grouped into 

two main parts. Each section represents an independent article in a 

format ready for submission for publication with minor modifications. 

The figures, tables and references cited in each section refer only to 

those contained in that section. The references cited in the General 

Introduction and General Summary are contained in the reference section 

at the end of the dissertation. 
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PART 1. PH0T0I0NI2ATI0N STUDIES OF HIGH 

TQIPERATURE VAPORS 
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SECTION I. MOLECULAR BEAM PHOTOIONIZATION 

STUDY OF $2 

Abstract 

Higher resolution photoionization efficiency data for the forma-

tion of Ŝ  and S from Ŝ  in the wavelength region of 600-1350 A have 

been obtained using the supersonic oven beam method. The ionization 

energy (IE) of is determined to be 9.356 ± 0.002 eV (1325.2 ± 0.3 Â). 

The measured appearance energy of 14.732 ± 0.005 eV (841.6 ± 0.3 A) for 

the dissociative ionization process Sg + hv + S +S+e, together 

with the IE of Ŝ , yields a value of 5.376 ± 0.005 eV for the bond dis-

sociation energy of Ŝ . Two Rydberg series converging to the b 

state (13.20 eV) of Ŝ  are observed. Window resonances resolved in the 

wavelength region of 650-850 Â are assigned as members of the Rydberg 

series converging to the ĉ Ẑ (17.70 eV) and (or ̂ 2̂ )̂ (18.66 eV) 

states of Ŝ . 

Introduction 

Due to the difficulty in the preparation of S^, only a few spec­

troscopic studies of in Che vacuum ultraviolet (VUV) region have 

1 2-4 
been made. The VUV absorption and photoelectron spectra of $2 

have provided information about the ground and excited states of Ŝ -

The photoionization efficiency (PIE) spectrum for Ŝ  has been measured 

by Berkowitz and co-workerŝ using an effusive source of produced 

from heated HgS. In addition to giving a value of 9.36 ± 0.02 eV for 
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~2 + 
the ionization energy (IE) for the X ̂ /̂Zg 2̂' previous 

photoionization study reveals rich autoionization structure in the 

wavelength region of 950-1250 Â- No attempt was made by the authors 

to assign the autoionization peaks found in the PIE curve of . There­

fore, the nature of the Rydberg states at energies above the IE of 

is essentially unexplored. 

The vapor produced by heating elemental sulphur may contain many 

higher molecular weight species other than Ŝ . Since moderately high 

temperatures are needed to produce pure vapor, the rotational and 

vibrational hot-band effects are expected to be severe. As demonstrated 

7 8 in previous studies ' the supersonic oven beam method is a useful 

technique to overcome the rotational hot-band effects and allows higher 

resolution PIE spectra to be obtained for high temperature vapors. This 

report presents PIE data for measured using the supersonic oven beam 

method. The higher resolution PIE curve for obtained in this experi­

ment has made possible the assignments of some autoionization peaks 

found in the wavelength region of 670-995 Â. Rydberg structures ob­

served here in the wavelength region of 670-940 Â were unresolved in 

the previous photoionization mass spectrometric study.̂  

Experimental 

The experimental procedures and arrangement are similar to those 

7 8 described previously. ' Briefly, the apparatus consists of a window-

less 3-m near normal incidence VUV monochromator (McPherson 2253 M), 
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an oven-type supersonic beam production system, a capillary discharge 

light source, a VUV light detector, and a quadrupole mass filter for 

ion detection. The grating is a Bausch and Lomb 1200 lines/mm MgF̂  

coated aluminum grating blazed at 1360 Â. Either the hydrogen many-

lined pseudocontinuum or the helium Hopfield continuum is used as the 

light source, depending on the wavelength region desired. 

The oven beam source is a two-stage stainless steel oven. The 

temperature of the first stage (the main oven) is maintained at 450 K. 

The vapor pressure at this temperature was estimated to be a few Torr. 

In order to assure the predominance of in the sulphur vapor, the 

second stage of the oven (the nozzle) is kept at a temperature of 850 

K. The relative concentrations of Ŝ , n = 1-10, species in the vapor 

9 
depend critically on temperature and pressure. At temperatures higher 

than 600 K and at pressures less than 'v 1 Torr, the vapor phase of sul­

phur is dominated by Ŝ . The supersonic beam is formed by seeding 

the sulphur vapor in 500 Torr of He and then expanding the mixture 

through the nozzle. After the expansion, the beam is further colli-

mated by a heated skimmer. Maintaining the skimmer at a temperature 

close to that of the main oven, eliminates the condensation problem. 

Under the conditions described above, and are the major impuri-

ties. The intensities for S, and S. observed at 800 A are less than 
4 3 

5% that of Ŝ . 

All of the PIE spectra presented here are based on at least two 

reproducible scans. The wavelength scales are calibrated by using 
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known atomic resonance lines, or emission lineŝ  ̂when the pseudo-

continuum is used. 

Results and Discussion 

The PIE data for obtained with a wavelength resolution of 1.4 

A (FWHM) in the region of 610-1340 Â are plotted in Figures 1(a) and 

1(b) at intervals of 0.5 Â. The general features of the spectrum 

recorded here are consistent with those reported by Berkowitz and Chup-

ka.̂  High resolution [0.28 A (FWHM)] PIE data in the region of 1340-

1100 Â have also been accumulated. Since no new structure was found 

in the high resolution spectrum, only the portion near the ionization 

onset of $2 (1320-1328 Â) is shown in the upper left hand corner of 

Figure 1(a). Figures 2(a) and 2(b) show the high resolution PIE spec­

trum for in the region of 340-1000 Â. 

In the one-electron approximation, the ground state electronic 

configuration for is ...(Ssâ )̂  (3sâ )̂  (Spâ )̂  (3pTT̂ )'̂  (3p̂ g)̂  

(X The removal of an electron from the valence orbitals gives 

rise to the ionic states b̂ Ẑ , c and 

etc. in the order of increasing energy. 

The IE for the states of determined by photoelectron spectro-

2 scopy are indicated in Figures l(a)-(b) and 2(a)-(b). No apparent 

structures correlating to the onsets of these states can be seen ex­

cept for the and. ̂ 2̂_/2g spates. The IE for (X̂ Ĥ ygg) 

marked by a sharp step at 1325.5 ± 1.5 A in the low resolution spec-
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1320 

1350 1300 1250 1150 1050 1200 1100 

CO 

(b) 8 9 10 CO 

950 900 850 000 650 1000 750 

Figure 1. PIE curves for In the region of (a) 1000-1340 A and (b) 620-1000 Â [wavelength 

resolution = 1.4 A (FV/llM) ] 
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Figure 2. PIE curves for in the region of (a) 920-1000 Â and (b) 840-920 Â [wavelength 

resolution = 0.28 Â (FWIIM) ] 
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trum. A more accurate value of 1325.2 ± 0.3 A (9.356 ± 0.002 eV) for 

the IE for is determined from the high resolution PIE data 

(see Figure 1(a)). The latter value is in good agreement with the value 

of 9.36 ± 0.02 eV determined by the previous photoionization experiment̂  

but slightly lower than that (9.38 ± 0.01 eV) found in the photoelectron 

2 2 
spectroscopic study of Dyke et al. The onset for the î/2g st&te of 

 ̂ O 
is less apparent. If the minor step at 1315 ± 1.5 A is assigned to 

2 + 
be the IE for the ]̂_/2g scace of Ŝ , the spin-orbit splitting of the 

state is estimated to be 600 - 125 cm ̂  from the low resolution PIE 
g 

spectrum for Ŝ . Taking into account the experimental uncertainties, 

2 -1 
this value is consistent with the photoelectron result of 470 ± 25 cm 

and the value of 469.7 ± 2.3 cm resulting from the rotational analy-

sis of the A - X bands of . It is possible that autoionization 

features appearing at the ionization threshold have affected the posi-

2 
tion of the minor step associated with the IE for the ĵ_/2g state. 

The minor step is not discernible in the high resolution spectrum. 

The positions of autoionizing vibrational bands superimposed on a 

strong and broad autoionization peak in the region of 1140-1260 Â, be­

tween the IE's of the X̂ II and a'̂ II states of Ŝ , are summarized in Ta-
g u 2 

ble 1. The spacing between adjacent vibrational bands varies in the 

-1 -1 
range of 'v 580-450 cm with an average vibrational spacing of 525 cm 

It is likely that these vibrational bands can be grouped into more 

than one vibrational progression. The detailed assignment of these 

autoionizing vibrational features awaits a higher resolution study in 
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Table 1. Progression of vibrational bands of in the range of 
1140-1260 Â 

v(cm Av(cm 

87,108 
453 

86,555 
448 

86,207 
481 

85,726 
511 

85,215 
505 

84,710 
499 

84,211 
564 

83,647 
556 

83,091 
583 

82,508 
541 

81,967 
501 

81,466 
560 

80,906 
585 

80,321 
576 

79,745 

Av  ̂= 526 
av 

Êstimated positions of the band centers. 

Ŝpacings between adjacent vibrational bands. 

c 
The average vibrational spacing. 

the future. Similar autoionizing vibrational bands resolved in the PIE 

curve for 0̂  below the IE of the a 11̂  state of 0̂  are much stronger and 

have been attributed to vibrational progressions of Rydberg series con­

verging to the state of 



www.manaraa.com

15 

Strong autoionization peaks appearing in the region of 945-1000 

Â can be assigned as members of two Rydberg series converging to the 

state of at 13.20 eV.̂  The positions of members of these Ryd­

berg series, which are called Rydberg series I and II here, are listed 

in Table 2. According to the photoelectron spectrum of obtained by 

Dyke et al.,̂  the electronic band is dominated by 

the (0,0) vibrational transition. It is likely that the positions 

of autoionizing peaks listed in Table 2 correspond to the (0,0) vibra­

tional bands of the Rydberg transitions. In the case of O2, two Ryd­

berg series, one strong and one weak, were observed to converge to the 

b̂ Zg state of 0̂ \̂  ̂ It was suggested that the Rydberg states of 

the strong Rydberg series originated from the excitation of one of the 

2pcr electron to a npO orbital.Yoshino and Tanakâ '̂  speculate that 
g u 

the weak series might arise from the excitation of a electron to a 

nso or nda orbital. The two Rydberg series of observed here are 

similar in intensity with Rydberg series I slightly stronger than Ryd­

berg series II. The values for the effective principal quantum number, 

n*, for Rydberg series I (Table 2) are similar to the n*-values for the 

Strong Rydberg series converging to the b state of O^. The approxi-

mate quantum defects, 5, in the Rydberg series of the free atomic sulfur 

are 6 = 2.0 for ns, 1.6 for np, and 0.3 for nd orbitals.̂  ̂ If the first 

members of Rydberg series I and II are assumed to have the values of 

6 and 7 for n, the quantum defects for Rydberg series I and II are cal­

culated to be 1.6 and 'v- 2.1, respectively. Therefore, it is logical 
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Table 2. Rydberg series I and II of observed in the region of 935-

1000 Â 

E(n) (eV) 
n Series I Series II n 

* <i 
5 
u 

6 
12 .501 (991.8 Â) 4.412 1, .88 

7 
12 .715 (975.1 A) 

12. .626 (982.0 Â) 
5.300 

4. .868 
1. 70 

2. .13 

8 
(964.3 Â) 

12. 802 (968.5 Â) 5. 845 2. ,16 
12, .858 (964.3 Â) 6.303 1. 70 

9 
(957.8 Â) 

12. 911 (960.3 A) 6. 862 2. ,14 
12. .945 (957.8 Â) 

(955.2 Â) 
7.301 1. 70 

10 12. 980 (955.2 Â) 7. 864 2. 14 
13. .906 (953.3 A) 

(951.7 Â) 
8.372 1. 63 

11 
(950.5 Â) 

13. 028 (951.7 Â) 8. 887 2. 11 
13. ,044 (950.5 Â) 9.345 1. 66 

12 
13, 073 (948.4 A) 

13. 061 (949.3 Â) 
10.353 

9. 882 
1. 65 

2. 12 

13 
13. 095 (946.8 A) 

13. 086 (947.5 Â) 
11.392 

10. 900 
1. 61 

2. 10 

14 
13. 112 (945.6 Â) 

• • • 

12.419 
• 

1. 58 
• 

15 
(944.3 Â) 13. 123 (944.3 Â) 13.404 1. 60 

Series IE(b̂ Z") IE(b̂ I~) 
g S 

limit 13.20̂  13.20̂  

Êffective principal quantum number. 

Q̂uantum defect. 

R̂eference 2. 

to associate Rydberg series I with Rydberg transitions ... 

(3sOg)̂  (3sâ )̂  (3pOg) (3p7T̂ )̂  (3pTr̂ )̂  npâ  n = 6 ..., and 

3 — 2 2 
Rydberg series II with transitions X — (3sOg) (3sâ ) (3pOg) 

(3oiT (3O7T nsa , n = 7 .... The satisfactory fits obtained 
• u g u u 
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for Rydberg series I and II using 13.20 eV as the convergence limit 

suggest that the value for the IE for determined by Dyke et 

2 al. is accurate. 

The low resolution PIE curve for [Figure 1(b)] shows three auto-

ionizing vibrational progressions in the region of 850-930 A. The high 

resolution spectrum of for the same region [Figures 2(a)-(b)] reveals 

an additional progression. The positions of the vibrational bands be­

longing to progressions I, II, III, and IV are listed in Table 3. The 

average vibrational spacings of progressions I, II, III, and IV are 

_1 
498, 568, 527, and 529 cm , respectively. These progressions most 

likely belong to Rydberg states converging to the state of 

2̂ I 2 
at 14.62 eV. The B Ẑ  photoelectron band of was found previously 

to have a progression of six vibrational bands with an average vibra-

-1 
tional spacing of 546 cm 

In the wavelength region of 650-850 Â, the PIE curve for 

shows a series of autoionizing states appearing as window resonances. 

These resonances are broadened, due in part to fast predissociation of 

to form s"*" + S in this region. The analysis of the window reso­

nances is summarized in Table 4. Using the values of 17.70 and 18.66 

eV for the IE's of the c'̂ Z and 1̂1 (or ̂ Z states, we have satis-
u u u 

factorily grouped these features into two Rydberg series, series III 

and IV, converging to the c'̂ Ẑ  and (or ̂ Ẑ ) states, respectively. 

The n*-values calculated for series III and IV are similar to those 

observed by Codling and Madden̂  ̂for Rydberg series of 0̂  converging 
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Table 3. Progressions of vibrational bands of observed in the region of 845-925 A 

Progression I Progression II Progression III Progression IV 

v(cm A / —l\b Av(cm ) V(cm Av(cm V(cm Av(cm v(cm Av(cm 

108,460 111,247 114,456 114,679 
520 560 526 541 

108,980 111,807 114,982 115,220 
513 565 531 521 

109,493 112,372 115,513 115,741 
482 558 537 511 

109,975 112,930 116,050 116,252 
486 590 527 530 

110,461 113,520 116,577 116,782 
490 570 505 534 

110,951 114,090 117,082 117,316 
537 539 

117,619 117,855 

Av  ̂= 498 Av c = 568 Av c = 527 Av c = 529 
av 

= 498 
av av av 

^Estimated positions of the band centers. 

''Spacings between adjacent vibrational bands. 

^̂ The average vibrational spacing. 
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Table 4. Rydberg series III and IV of S„ observed in the region of 
660-850 Â 

E(n) (eV) 
n Series III Series IV n* 

a D 

4 14.840(835.5 A) 
15.204(815.4 Â) 

2. 181 1. 819 

16.271(762.0 Â) 
15.204(815.4 Â) 1. 985 2. .015 

5 16.271(762.0 Â) 3. 086 1. 914 
17.161(722.5 Â) 3. 012 1. 988 

6 16.915(733.0 Â) 
17.788(697.0 Â) 

4. 163 1. 837 

7 
17.788(697.0 Â) 3. 951 2. 049 

/ 

Q 
18.100(685.5 Â) 4. 929 2. 071 

0 
18.273(678.5 Â) 5. 932 2. 068 

Series IE(c*Z") IE(^n or h~)' u u u 

limit 17.70̂  18.66̂  

Êffective principal quantum number. 

Quantum defect. 

R̂eference 2. 

to the c state of 0̂ . The PIE spectrum of 0̂  obtained by Dehmer and 

13 
Chupka shows that the first members of one of the Codling and Mad-

den's Rydberg series in the region of 580-596 Â appear as broad window 

resonances. These Rydberg states of 0̂  have been assigned̂ '̂̂  ̂to 

Rydberg transitions of a 2sa electron to an nsO orbital. Assuming 
u g 

n = 4 for the first members of Rydberg series III and IV, the ô-values 

are found to be close to that for a free sulfur atom in the ns orbital. 

This observation suggests that Rydberg series III and IV involved tran­
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sitions to ns -type Rydberg orbitals. 

0 
The PIE curve for S from in the region of 730-850 A obtained 

using a wavelength resolution of 1.4 Â (FWHM) is shown in the lower 

part of Figure 3. The low resolution spectrum is consistent with 

that reported by Berkowitz and Chupka.̂  The appearance energy (AE) for 

s"*" formed by the process 

+ hv S 4- S + e (2) 

is determined to be 841.5 ± 1.5 Â from the low resolution spectrum. 

The high resolution [0.28 Â (FWHM) ] PIE data for S"*" in the region of 

825-845 Â are plotted in the upper part of Figure 3, showing that the 

value of 14.732 ± 0.005 eV (841.6 ± 0.3 Â) for the AE of s"*" can be 

obtained directly without the correction for hot-band effects. The AE 

for s"̂  determined here is in good agreement with a value of 14.74 ± 0.01 

eV deduced in the previous photoionization study.̂  The latter value 

was obtained by correcting for the shift of the measured AE for due 

to initial thermal energy of Ŝ . Combining the IE of S2 and AE for 

process (2) measured in this experiment, we obtain a value of 5.376 

0.005 eV for the bond dissociation energy of Ŝ . The AE for S , to-

21 
gether with the known IE (10.360 eV) for the sulfur atom, allows the 

calculation of a value of 4.372 eV for the bond dissociation energy of 

. Taking into account the experimental uncertainties, the latter val­

ue is in accord with the spectroscopic value of 4.3693 eV deduced by 

22 
Ricks and Barrow. 
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(/) 841-6 *03 A 

840 

841.5*1-5 Â 
Q. 

850 800 750 

Figure 3(a). PIlî curve for In the region of 730-850 A [wavelength resolution = 1.4 X 
(FWHM)] 

Figure 3(b). PIE curve for in the region of 825-846.5 Â [wavelength resolution = 0.29 Â 
(FWHM) ] 



www.manaraa.com

22 

References 

1. R. J. Donovan, D. Husain, C. D. Stevenson, Trans. Faraday Soc. 
66, 1 (1970). 

2. J. M. Dyke, L. Golob, N. Jonathan, and A. Morris, J. Chem. Soc. 
Faraday Trans. II 71, 1026 (1975). 

3. J. Berkowitz, J. Chem. Phys. 4074 (1975). 

4. M. Wu and T. P. Fehlner, J. Am. Chem. Soc. 7578 (1976). 

5. J. Berkowitz and C. Lifshitz, J. Chem, Phys. 4346 (1968). 

6. J. Berkowitz and W. Chupka, J. Chem. Phys. 4245 (1969). 

7. S. H. Linn, J. M. Brom, Jr., W.-B. Tzeng, and C. Y. Ng, J. Chem. 
Phys. 78, 37 (1983). 

8. S. H. Linn, W.-B. Tzeng, J. M. Brom, Jr., and C. Y. Ng, J. Chem. 
Phys. 78, 50 (1965). 

9. J. Berkowitz, in "Elemental Sulphur," edited by B. Meyer (Inter-
science, New York, 1965). 

10. K. E. Schubert and R. D. Hudson, Rep. No. ATîI-64 (9233)-2 
(Aerospace Corp., Los Angeles, 1963). 

11. A. J. Capel, J. H. D. Eland, and R. F. Barrow, Chen. Phys. Lett. 
82, 496 (1981). 

12. W. C. Price and G. Collins, Phys. Rev. 714 (1935). 

13. P. M. Dehmer and W. A. Chupka, J. Chem. Phys. 4525 (1975). 

14. K. Yoshino and Y. Tanaka, J. Chem. Phys. 4359 (1968). 

15. T. Takamine and Y. Tanaka, Phys. Rev. 59_, 771 (1941). 

16. K. Codling and R. P. Madden, J. Chem. Phys. 3935 (1965). 

17. E. Lindholm, Ark. Fys. 97 (1969). 

18. The designation of the states at 18.10 and 18.66 eV is uncertain 
(see Ref. 2). 



www.manaraa.com

23 

19. E. Lindholm Ark. Fys. 117 (1969). 

20. B. Narayana and W. C. Price. J. Phys. B 1784 (1972). 

21. C. E. Moore, Natl. Stand. Ref. Data Ser., Natl. Bur. Stand. 
NSRDS-NBS34 (1970). 

22. J. M. Ricks and R. F, Barrow, Can. J. Phys. 2423 (1969). 



www.manaraa.com

24 

SECTION II. MOLECULAR BEAM PHOTOIONIZATION 

STUDY OF Hg. 

Abstract 

Photoionization efficiency data for Hĝ  have been obtained in the 

region of 650-1400 A. The ionization energy of Hĝ  was determined to 

be 9.10310.010 eV. This value allows the calculation of the dissocia­

tion energy of Hĝ  to be l-40±0.02 eV. By analyzing the differences 

in energy between corresponding autoionization peaks observed in the 

Hg"*" and the Hĝ  spectra and by assuming the charge induced-dipole in-

+ 2 
teraction to be the dominant interaction between Hg ( 3/2̂  and Hg 

at the equilibrium bond distance of Hg2, the equilibrium bond distance 

for Hg2 was deduced to be 3.35 Â. 

Introduction 

In recent years, interest in the photoionization study of metal 

clusters has increased dramatically. The prime motivation for these 

studies is to understand the change in electronic states as a function 

of the degree of aggregation and to provide a foundation for understand­

ing the physical and chemical basis for catalysis. Ionization energy 

(IE) measurements, in combination with theoretical investigations of 

metal clusters, will yield information about the structures and sta­

bilities of these species.̂  However, due to difficulties in both pre­

paring metal clusters in high concentration and in obtaining high pho­

ton intensity in the vacuum ultraviolet (VUV) region, the photoioniza-
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tion study of metal clusters remains nearly an unexplored field. For 

metal clusters which have IBs below 2000 Â (6.2 eV), laser radia­

tions can in principle be used as the light sources. The only sys­

tems which have been relatively well-characterized near the thresh­

olds by one-photon ionization mass spectrometry are alkali metal clus­

ters.̂  ̂  These measurements have mainly been made by using conven- • 

tional high-pressure Hg-lamp.̂ '̂  The odd/even alternation in IBs was 

observed in alkali metal clusters, indicating that even-numbered 

1 4 
clusters are more stable than odd-numbered clusters. ' Accurate two-

photon photoionization thresholds for Na2 and have been obtained by 

Herrmann et al.̂ '̂  and leutwyler et al.̂ . Recently, Smalley and co­

workers have developed a pulsed laser evaporization metal cluster beam 

source.̂  Using resonance two-photon ionization with mass selective 

detection, they have also been able to determine the lEs of Cû ^̂  and 

9 MOg. The IE of Mn̂  has been estimated indirectly from the collision-

+ 12 
induced dissociation threshold of Mn2 by Ervin et al. 

At the present stage, it is still difficult, if not impossible, 

to obtain single-photon ionization spectra of metal dimers and clusters 

in the whole energy range of 6-21 eV by the laser photoionization meth­

od. Because of the low duty factor of the pulsed metal cluster source 

developed by Smalley and co-workers, it is not suitable to use the 

pulsed metal cluster source together with laboratory discharge sources 

or synchrotron radiation for photoionization studies. Nevertheless, 

with the proper selection of oven materials, continuous oven-type su­

personic nozzle sources can be operated successfully to provide high 
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concentrations of many metal dimers and small clusters. A hot-oven 

supersonic copper nozzle source has been demonstrated by Preuss et 

al." 

To our knowledge, no photoionization efficiency (PIE) spectra of 

metal dimers, with the exception of alkali metal dimers, has been re­

ported previously. This paper presents the results of the first pho­

toionization study of Hĝ  synthesized by the supersonic expansion of 

Hg vapor. The IBs of Hĝ  (n ̂  12) have been measured previously by 

14 15 
electron impact ionization. ' 

Experimental 

The experimental procedures and arrangement are similar to those 

described previously.Briefly, the apparatus consists of a win-

dowless 3-m near normal incidence VUV monochromator (McPherson 2253 M), 

an oven-type supersonic beam production system, a capillary discharge 

light source, and a quadrupole mass filter for ion detection. The 

grating employed in this study was a Bausch and Lomb 1200 lines/mm MgF2 

coated aluminum grating blazed at 1360 Â. Either the hydrogen many-

lined pseudocontinuum or the helium Hopfield continuum was used as the 

light source, depending on the wavelength region desired. 

The oven beam source used is a two-stage stainless steel oven.̂  ̂

By maintaining the second stage (the nozzle) at a slightly higher tem­

perature than that of the first stage (the main oven), a stable beam 

of Hg could be obtained. Most of the data presented in this work were 

taken with the main oven and nozzle at 610 and 640 K, respectively. 
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The vapor pressure of Hg in the main oven was estimated to be 500 

Torr. In a typical run, the fluctuation in the oven and nozzle tem­

peratures was less than i3 K, as monitored with thermocouples. 

The Hg used in this study was obtained from Fisher Scientific 

Company. It is stated to have less than 5 ppm of foreign metals. Ar­

gon was used as the carrier gas. The carrier gas pressure, which was 

maintained in the range of % 560-760 Torr, was higher than the vapor 

pressure of the sample at a given oven temperature. 

The wavelength resolution used in this study is 1.4 Â (FWHM). 

Photoionization efficiency data were taken at intervals of 0.5 Â. De­

pending on the wavelength region, the counting time at each point 

varied from 12 to 30 sec. The counting rate for Hĝ  at 1276 A was 

6̂000 count/s. The standard deviations for PIE data obtained in this 

experiment are better than ±10%. The PIE spectra presented here are 

based on more than two scans. The wavelength scales were calibrated by 

19 
using known atomic resonance lines or emission line when the H2 

pseudocontinuum was used. 

Results and Discussion 

Figures 1(a) and (b) show the PIE curves for Hg"*" and Hĝ , respec­

tively, in the region of 600-1400 A. The peak heights of the autoioni-

zation features at 1127 A observed in the PIE curves for Hg"*" and Hĝ  

have been arbitrarily normalized to the same value. 

The ionization threshold of Hg exhibits a sharp step-like struc­

ture at 1189 ± 1.5 Â. The IE of Hg (10.428 ± 0.013 eV) determined here 
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20 
is in good agreement with values reported in the literature. The 

PIE for Hĝ  was found to increase gradually near the threshold, indi­

cating that the Franck-Condon factor is unfavorable for the photoioni-

zation process. Nevertheless, a small step-like feature is evident 

at 1362 ± 1.5 Â (9.103 ± 0.010 eV), which is identified to be the IE 

of Hg2. This value is approximately 0.3 eV lower than those deter­

m i n e d  p r e v i o u s l y  b y  e l e c t r o n - i m p a c t  i o n i z a t i o n  s t u d i e s . T h e  

dissociation energy of (D̂ ) has been estimated by transport coef-

22 
ficient measurements and optical spectroscopy. A value between 0.065 

and 0.091 is recommended by Ref. 22. Recently, in a high-temperature 

mass spectrometric study with a Knudsen cell, the dissociation enthal-

23 
py at 0 K of Hĝ  was determined to be 0.074 ± 0.020 eV. Using the 

latter value and the lEs of Hg and Hg2, the dissociation energy for 

Hĝ  was calculated to be 1.40 ± 0.02 eV. 

The PIE curve for Hg"*", shown in Figure 1(a), is in agreement 

24-26 
with those obtained previously using similar wavelength resolutions. 

Autoionization structures have been assigned to transition of the Ryd-

27-29 
berg series. 

(5d)l°(6s)2 ^ [(5d)*(6s)2 0̂5/2,3/2̂  n(p,f) and 

(5d)l°(6s)2  ̂[(5d)*(6s)2 

in 2 1 9 2 ? 
The (5d) (6s) [(5d) (6s) ĥe dominant au-

toionizing series. The assignments of these Rydberg series are indi­
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cated in Figure 1(a). 

Autoionization structures resolved in the PIE curve for Hĝ  are 

broader than, but in general, similar to those found in the Hg"̂  spec­

trum. With the exception of the autoionization peak at 1127 A, which 

is essentially unchanged in peak position in comparison to that of 

the [(5d)̂ (6s)̂  P̂° atomic Rydberg state, all the other au­

toionization features found in the PIE curve for Hĝ  appear to be red-

shifted with respect to the corresponding atomic autoionization peaks. 

Similar observations have been reported previously in the photoioniza-

30-32 
tion of rare gas dimers. 

The correlations between autoionization peaks observed in the Hg"̂  

and Hg2 spectra are summaried in Table 1. The two major Rydberg series 

found in the Hĝ  spectrum have been correlated with the 

[(5d)̂ (6s)̂  ̂ 5̂/2̂  ^̂ 1 [(5d)̂ (6s)̂  ̂ 3̂/7̂  np, ̂ P° series. 

9 2 2 
The [(5d) (6s) 5̂/2 3/2̂  nf series cannot be resolved in the PIE 

curve for Hĝ - Only two members (n = 6 and 7) of the [(5d)̂ (6s)̂  ̂ 3̂/2̂  

3 np, D| series are identifiable in Figure 1(b). The autoionization 

peak at 1276.5 Â in the Hĝ  spectrum is most likely to have originated 

9 2 2 1 
from the atomic Rydberg state, [ (5d) (6s) 5̂/2̂  6p, P®. Since this 

*4* 
state is below the IE of Hg, it cannot be seen in the Hg spectrum. In 

33 
an electron-impact study of mercury vapor, Skerbele et al. have ob­

served relatively intense peaks at 1301, 1260 and 1250 A, which were 

2 1 1 
attributed to Rydberg excitations, (6s) Ŝ  6snp, P°, n = 8, 9, and 

10, respectively. It is possible that the shoulders of the peak at 

1276.5 A partly arise from these transitions. The nature of the three 
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Figure 1(a). PIE curve for Hg in the region of 650-1200 A 

Figure 1(b). PIE curve for Hĝ  in the region of 650-1400 Â 
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* 9 2 2 2 
Table 1. Potential energy of Hg ([(5d) (6s) °3/2̂  ̂ p] 'Hg 

at the equilibrium bond distance of Hĝ  

Hg Rydberg Serieŝ  E*(n) ̂ Ê Cn) AE(n) ̂ D*(n) ̂ 

(eV) n* ̂ (eV) (eV) n* ̂ (eV) (eV) 

I(5d) 
q 7 0 

(6s)2 Dg/,] np, 

n = 6 9.772 
(1268.8Â) 

1. .637 ... 9.713 
(1276.51) 

1. .662 -0.0598 -0 .133 

7 13.128 
(944.5Â) 

2. .819 13.134 
(9441) 

12.969 
(9561) 
13.106 
(9461) 

2, 

2. 

.854 

979 

-0.165 

-0,028 

-0, 

-0. 

.239 

.102 

8 13.920 
(890.7%) 

3. 846 13.915 
(89ll) 

13.730 
(9031) 

3. 869 -0.185 -0. ,259 

9 14.263 
(869.31) 

4. 854 14.259 
(869.51) 

14.057 
(8821) 

4. 835 -0.202 -0. 276 

10 14.444 
(858.41) 

5. 862 14.442 
(858.21) 

14.243 
(870.51) 

5. 862 -0.199 -0. 273 

OO 14.850 
(835A) 

14.639 -0.211 -0. 285 

R̂eferences 27 and 29. 

n̂* and n* are the effective principal quantum numbers for the 

atomic and molecular Rydberg series, respectively. 

C 
Autoionization peak observed in the PIE curve for Hg . 

Âutoionization peak observed in the PIE curve for Hĝ -

®AE(n) = E*(n) - E*(n). 

T̂he potential energy of Hg*(n)' Hg at the equilibrium bond dis­
tance of Hĝ  calculated using Eq. (1). 

T̂his value is calculated using Ê (n=6) = 9.772 eV. 
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Table 1. continued 

Hg Rydberg Series E*(n) EgCn) AE(n) D*(n) 

(eV) 
A 

*1 
(eV) (eV) 4 (eV) (eV) 

[(5d) 
q ? ? 

(6s)^ ^*3/2] ' 

n = 6 11.005 
(1126.6Â) 

1.545 11.001 
(1127Â) 

11.001 
(1127Â) 

1 .572 0.0 -0.074 

7 14.872 
(833.7Â) 

2.725 14.875 
(833.5Â) 

14.760 
(840Â) 

2 .792 -0.115 -0.189 

8 15.743 
(787.eX) 

3.765 15.744 
(787.5Â) 

15.566 
(796.5%) 

3 .806 -0.178 -0.252 

9 16.108 
(769.7Â) 

4.776 16.112, 
(769.5A) 

15.906 
(779.5%) 

4, .766 -0,206 -0.280 

10 16.297 
(760.8Â) 

5.777 16.303 
(760.5Â) 

16.092 
(770.5Â) 

5, .739 -0.211 -0.285 

CO 16.716 16.505 -0.211 -0.285 

[(5d)' )(6s)2 3 
np. 

n = 6 11.622 
(1066.8Â) 

11.615 
(1067.5Â) 

11.512 
(10771) 

-0.103 -0.177 

7 14.967 
(828.4Â) 

14.974 
(828A) 

14.911 
(831.5%) 

-0.063 -0.137 
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weak peaks at 1199, 1192, and 808 A and the two broad features at 

1054 and 1020 A are not known. 

9 2 2 
The members, n = 6 and 7, of the Rydberg series [(5d) (6s) 5̂/2̂  

•np, seem to be split into doublets in the Hĝ  spectrum. The ground 

state for Hĝ  is a 0̂  state. Stemming from the consideration that the 

interaction of a mercury atom in an excited Rydberg state, 

[(5d)̂ (6s)̂  ̂ 5̂/2̂  ^̂ 1' Hg(̂ Sg) can give rise to the 0̂  and 1̂  

excited molecular states, the doublets probably arise from the allowed 

H" 
molecular transitions, 0 -<-0 and 1 •«- 0 . In a high resolution ex-

u g u g 

periment, these autoionization peaks will probably resolve into vibra­

tional bands. This expectation has been illustrated in the high résolu-

3X 32 3A 37 
tion photoionization study of rare gas dimers. ' ' 

When the vapor pressure of Hg was increased by raising the tem­

perature of the main oven and/or when the stagnation pressure for the 

Ar carrier gas was increased, the ratio of the peak height of the auto­

ionization peak at 1127 Â to that at 1276.5 Â. in,the Hĝ  spectrum was 

found to increase correspondingly. The two peaks at 946 and 956 A 

become unresolved and emerge into a single broad feature as the Ar 

carrier gas pressure was raised to 'v 2500 Torr. Under these nozzle 

expansion conditions, the concentrations of mercury trimers and higher 

clusters are expected to be higher than those obtainable by using the 

nozzle conditions described in the experimental section. These ob­

servations are probably due to efficient fragmentation of Hĝ (n ̂  3) 

to form Hĝ  at higher energies. 
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30 38 
As pointed out by Ng et al. and Ono et al. from the measured 

peak position of an autoionizing state in the Hg"*" spectrum (E*(n)) and 

the corresponding peak position in the Hĝ  spectrum (E*(n)), the inter­

action potential energy between an excited Rydberg mercury atom and a 

mercury atom in the ground state at the equilibrium bond distance of Hĝ  

(D*(n)) can be calculated by the relationship, 

D*(n) = E*(n) - E*(n) + D (1) 
I 1 o 

Using the value of -0.074 for D̂ , values for D*(n) were calculated ac­

cording to Eq. (1). These are listed in Table 1. Based on the dis­

cussion in the analyses of Rydberg series resolved in PIE curves for 

30 + 
other dimer ions such as the rare gas dimer ions, (082)2» and 

+ 39 *  ̂
(005)2, one expects that the absolute value for D (n) increases as 

n increases and converges to a constant value when n becomes suffi­

ciently large. This trend is observable for values of D*(n) derived 

from the analysis of the two major Rydberg series. The value for D*(n) 

seems to converge to —0.28 eV in both series. The uncertainty for 

AE*(n) is estimated to be ̂  1 Â, which corresponds to approximately 

20 meV in the region of 900-750 Â. VJithin the uncertainty of this 

9 2 2 
experiment, the convergence limits for the series, [(5d) (6s) 5̂/2̂  

P̂° and [(5d)̂ (6s)̂  ̂ 3̂/2̂  ^̂ 1' in the Hĝ  spectrum, are con­

sistent with values of 14.639 and 16.505 eV, respectively. These values 

correspond to D*(a>) = -0.285 eV. Here, D*(<=°) is the potential energy 

+ 2 2 
of Hg ( Dgyg 3̂/2̂  "Hg at the equilibrium bond distance of Hg2- The 
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effective principal quantum numbers (n̂ ) calculated using these con­

vergence limits are also listed in Table 1. 

It has been shown previously in similar systems that the inter­

action potential for a dimer ion at the equilibrium bond distance of 

the neutral dimer (R̂ ) is consistent with the prediction from a charge 

induced-dipole interaction, V = -ê a/2R̂ .̂ The polarizability (a) for 

Hg is equal to 5.03-5.17 Assuming V to be equal to D*(«0, the 

equilibrium bond distance for Hĝ  is predicted to be 3.35 A. This 

value is found to be in excellent agreement with values determined by 

41 
transport coefficient measurements. 

o 
In summary, the PIE spectrum for Hĝ  in the region of 650-1400 A 

has been measured by the molecular beam photoionization method. This 

study shows that when photoionization of van der Waals dimer consisting 

of two atoms is carried out with sufficiently high resolution and the 

differences in energy between corresponding Rydberg peaks resolved in 

the PIE spectra for the monomer and dimer ions are measured, accurate 

value for the equilibrium bond distance of the neutral dimer can be de­

termined using the known value for the polarizability of the atom. In 

the case when the equilibrium bond distance of the neutral dimer is 

known, the polarizability of the atom can also be determined-
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SECTION III. MOLECULAR BEAM PHOTOIONIZATION STUDY OF 

HgKr AND HgXe 

Abstract 

Photoionization efficiency data for HgKr"*" and HgXe"*" have been ob­

tained in the region of 730-1290 Â. The ionization energies (IE) of 

HgKr and HgXe were determined to be 10.056 ± 0.012 eV (1233 ± 1.5 Â) 

and 9.709 ± 0.011 eV (1277 ± 1.5 Â), respectively. Using these values, 

the known dissociation energies of HgKr and HgXe and the IE of Hg, 

the binding energies for the ground state mercury-rare gas molecular 

ions were deduced to be 0.393 ± 0.013 eV for HgKr"*" and 0.748 ± 0.013 

eV for HgXe"''. By analyzing the shifts in energy between corresponding 

autoionization peaks observed in the Kr"̂ , HgKr"*", Xe"*", and HgXê  spec­

tra and by assuming the charge induced-dipole interaction to be the 

dominant interaction at the equilibrium bond distances for HgKr and 

HgXe, the equilibrium bond distances for HgKr and HgXe were deduced to 

be 3.98 and 4.23 A, respectively. The latter values are in excellent 

agreement with values determined by previous spectroscopic studies. 

Introduction 

The mercury-rare gas van der Waals molecules have been the subject 

of numerous spectroscopic investigations. The current interest of 

these molecules stems in part from their potential as mediums for high 

13 power excimer lasers. The previous studies have provided accurate 

spectroscopic information for the neutral mercury-rare gas molecules. 
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On the contrary, only a few spectroscopic studies on HgAr"'" have been 

made. Spectroscopic information for EgKr"*" and HgXe"*" is essen-

28 tially unavailable. Recently, Linn et al. have performed a photo-

ionization study on HgAr using the supersonic oven beam method. Com­

bining the ionization energy (IE) of HgAr determined in their study 

and the known dissociation energy (D̂ ) for HgAr, they have deduced an 

accurate value for D̂ CHgAr"̂ ). In this report, we present the results 

of a similar photoionization study on HgKr and HgXe. 

Experimental 

The experimental arrangement and procedures are similar to those 

described previously.Briefly, the apparatus consists of a win-

dowless 3-m near normal incidence vacuum ultraviolet (VUV) mono-

chromator (McPherson 2253 M), an oven-type supersonic beam production 

system, a capillary discharge light source, a VUV light detector, and 

a quadrupole mass filter for ion detection. The grating employed in 

this study was a Bausch and Lomb 1200 lines/mm MgF2 coated aluminum 

grating blazed at 1360 A. Either the hydrogen many-lined pseudocon-

tinuum or the helium Hopfield continuum was used as the light source, 

depending on the wavelength region desired. 

The oven beam source is a two-state quartz oven which has a de­

sign similar to the stainless steel oven reported previously. 

The chemical inertness of quartz enables stable operation of the oven 

for a sufficiently long period of time such that accurate photoioniza-
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tion efficiency (PIE) data can be recorded without interruption. By 

maintaining the second stage (the nozzle) at a slightly higher tem­

perature than the first stage (the main oven), a stable beam of Hg 

can be obtained. In this experiment, the main oven and the nozzle 

were kept at 580 and 620 K, respectively. The vapor pressure of 

Hg in the main oven was estimated to be 200 Torr. The HgKr (HgXe) 

complexes were prepared by seeding Hg vapor in '\i 1600 Torr of Kr (Xe) 

and then expanding the mixture through the nozzle. 

The Hg used in this study was obtained from Fisher Scientific 

Company. It is stated to have less than 5 ppm foreign metals. The 

Kr and Xe were obtained from Air Products and have the purities of 

> 99.995%. 

The wavelength resolution used in this study is 1.4 A (FWHM). 

Photoionization efficiency data were taken at intervals of 0.5 A. De­

pending on the wavelength region, the counting time at each point 

"4* "t" 
varied from 30 to 70 s. The counting rates for HgKr and HgXe at 

1127 Â were 100 and 250 cts/s, respectively. The wavelength scales 

were calibrated by using known atomic resonance lines or Ĥ  emission 

22 lines when the Ĥ  pseudocontinuum was used. 

Results and Discussion 

The PIE curves for HgKr"*" and HgXe"*" in the region of 730-1290 Â 

are compared to that for Hg"*" in Figures l(a)-(c). The Hg"*" spectrum 

20 21 
was obtained in a previous photoionization study. ' The threshold 
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Figure 1(a). PIE curve for Hĝ  in the region of 730-1200 Â 

Figure 1(b). PIE curve for llgKr̂  in the region of 750-1270 Â 

Figure 1(c). PIE curve for HgXê  in the region of 860-1290 Â (wavelength resolution = 
1.4 Â (FUllM)) 
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 ̂ -J* 
behavior for HgKr is similar to those observed for Hg , Hĝ , and HgAr . 

A distinct step-like feature is evident at 1233 ±1.5Â (10.056 ± 0.12 eV) 

which is identified to be the IE of HgKr. In contrast to HgKr, the PIE 

curve for HgXe"*" exhibits a tailing structure at the threshold. A 

sharp rise in PIE is observed at 1277 ±1.5 Â (9.709±0.011 eV). At 

wavelength longer than 1277 Â, the HgXe"*" ion signal is found to be with­

in the noise level. Thus, the value of 9.709 ± 0.011 eV is assigned 

to be the IE of HgXe. 

The values for D̂ (HgKr) and D̂ (HgXe) are well known from previous 

spectroscopic studies.̂  ̂  An accurate value of 168 cm ̂  for D̂ (HgKr) 

has been obtained recently from the analysis of the fluorescence exci­

tation spectrum for HgKr observed in a supersonic jet experiment by 

Fuke et al.̂  This value is in good agreement with those determined by 

Bousquet, Bras, and Majdî  and Grycuk and Czerwosz.̂  The values of 

240 ± 10 and 220 ± 20 cm  ̂for D̂ (HgXe) obtained by Grycuk and Fin-

3 2 
deisen and Bousquet, Bras, and Majdi, respectively, are within the 

experimental uncertainties of their experiments. Combining the lEs 

of Hg, HgKr, and HgXe and the known values for D̂ (HgKr) and D̂ (HgXe), 

we deduce values of 0.393 ± 0.013 and 0.748 ± 0.013 eV for D̂ (HgKr''") 

and Dg(HgXê ), respectively. The values for ^̂ (Hgg),̂  ̂Dg(HgAr̂ ),̂  ̂

(HgKr"̂ ) , and D̂ (HgXe'̂ ) are summarized in Table 1. The value for 

Dg(Hĝ ) is approximately twice that for HgXe"̂ . The bond dissociation 

energies for the ground state HgX"'", X = Ar, Kr, and Xe, ions are in the 

order D̂ (HgXe''") > D̂ (HgKr''') > (HgAr"*"). This trend is similar to that 
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Table 1. Dissociation energy (D̂ ) for the mercury-rare gas molecular 
ions 

Ions D (eV) 
o 

a 
Egg 1.42 ± 0.02 

HgAr"*" 0.228 ± 0.017̂  

% 0.202 ± 0.012̂  

HgKr"̂  0.393 ± 0.013̂  

HgXe* 0.748 ± 0.013̂  

Reference 19. 

R̂eference 18. 

"̂ Reference 17. 

'̂ This work. 

observed in the ground state dissociation energies for the rare gas 

23-31 
dimer ions. This trend is expected from simple molecular or­

bital theory which has been used to rationalize the measured dissocia-

31 tion energies for heterogeneous rare gas dimer ions. 

+ 10 
Autoionization peaks resolved in the PIE spectrum for HgAr 

were found to correlate well with known optically allowed absorption 

lines of Hg and Ar indicating that transitions involved in the HgAr 

system are perturbed atom-like transitions. This observation is 

consistent with the small values observed for Dg(HgAr̂ ) and D̂ (HgAr). 

Since D̂ (HgX) and Dg(HgX̂ ), X = Kr and Xe are greater than D̂ (HgAr) 

and D̂ CHgAr"*"), respectively, transitions associated with the HgKr 
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and HgXe system are expected to be more molecule-like as compared to 

those involved in the HgAr system. The positions of the optically 

32-34 9 2 
allowed Rydberg transitions, [5d ( 3/2̂  iip, n ̂  6] and 

n ̂  5] of Hg, '̂̂ 2/2 1/2̂   ̂ and 

[4p̂ (̂ P2/2 1/2̂  n ̂  4] of Kr and 1̂2} n ̂  7] and 

[5p̂ (̂ P2/2 1/2̂  nd, n ̂  5] of Xe are marked in Figures 1(a)-(c). The 

correlations between optically allowed atomic lines and many autoioni-

zation peaks resolved in the HgKr"̂  and HgXê  spectra are not apparent. 

Similar to the observation found in the photoionization of rare gas 

dimers,̂  ̂ most of the autoionization peaks appearing in the HgKr 

and HgXe"*" spectra in Figures 1(b) and 1(c) should be resolved into 

vibrational fine structures when a sufficiently high wavelength resolu­

tion is used. 

The autoionization features of HgKr at 1126.2, 835, and 

9 2 
789 A obviously originate from the Rydberg states 5d ( 

n = 6, 7 and 8, of Hg. The structure of the HgKr"'" spectrum in 

the region of 850-1100 Â has the resemblance of that found in the 

XeKr"*" spectrum obtained using a similar wavelength resolution. It is 

most likely that autoionization peaks in this wavelength region arise 

from transitions having strong Kr character. The autoionization 

peaks at 887.5, 876.4, and 870.0 A can be correlated to the atomic 

Rydberg states of  ̂= 6, 7, and 8, of Kr. • The 

strongest peak at 1168.5 Â may have the origin from the 4p ( 5s, 

[-j]° state of Kr. The correlations of autoionizing peaks to atomic 

Rydberg states are indicated by dash lines in the figures. Table 2 
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Table 2. Potential energies of np] • Kr and Hg • 

Kr*[4P̂ (̂ P̂ y2) nd] at the equilibrium bond distance of HgKr 

Rydberg E*(n) ^ E*(n)  ̂ AE(n) D*(n) ® 

series n̂  (eV) "z (eV) (eV) (eV) 

Rr(4p5(2p̂ /2) tid [|-]°) 

n = 6 4,789 14,072 4.886 13,970 -0.102 -0,1239 
(881,06 Â) (887.5 Â) 

n = 7 5.788 14.260 5.885 14.147 -0.112 -0.134 
(869.49 Â) (876.4 Â) 

n = 8 6.797 14.371 6.863 14.252 -0,120 -0.141 
(862.74 Â) (870.0 Â 

n = « 14.666 14.540 -0.126 -0.147 
(845.42 Â (852,7 Â) 

Hg(5d*(2D2/2) np V) 

n = 6 1.545 11,005 
(1126,63 A) 

n = 7 2.725 14,872 
(833,66 I) 

11,001 -0,004 -0.025 
(1127.0 A) 

14,849 -0,023 -0,044 
(835.0 Â) 

n̂* and n* are the effective principal quantum numbers for the 

atomic and molecular Rydberg series, respectively. 

R̂eferences 32-34. 

C 4-
Autoionization peak observed in the PIE curve for HgKr . 

'̂ AE(n) = E2(n) - Ê (n). 

T̂he potential energy of Hg • Kr*(n) or Hg*(n) • Kr at the equi­
librium bond distance of HgKr calculated using Eq, (1), 
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Table 2. continued 

Rydberg 
series n* 

E*(n) 

<eV) 

E*(n) 

(eV) 

AE(n) D*(n) 

(eV) (eV) 

n = 8 3.761 15.743 
(787.57 I) 

3.761 15.714 -0.029 -0.050 
(789.0 Â) 

16.705 
(742.21 Â) 

Hg(5d̂ (̂ D3/2̂  

n = 6 11.615 
(1066.81 Â) 

11.598 -0.017 -0.038 
(1069 Â) 

+ 
summarizes the assignments of autoionizing peaks appearing in the HgKr 

spectrum. 

The assignments of autoionizing features resolved in the HgXe"'" 

spectrum to optically allowed atomic Xe and Hg transitions are more 

difficult in comparison with those encountered in the analysis of the 

HgAr"*" and HgKr"*" spectra. Autoionizing states of HgXe, which can be 

unambiguously correlated to atomic Rydberg states of Hg and Xe are 

listed in Table 3. 

The positions of autoionization peaks for HgKr"̂  and HgXê  listed 

in Tables 2 and 3 are red-shifted with respect to the corresponding 

positions of the atomic autoionizing states. As pointed out previous­

ly 23 35 
ly by Linn et al., Ng et al. and Ono et al. from the measurements 

of the peak position of an autoionizing state in Kr"̂  (Xê ) spectrum 
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. 9 2 
Table 3. Potential energies of Hg [5d ( D_,_) np] • Xe and Hg • 

. 5 2 ' 
Xe [5p ( nd] at the equilibrium bond distance of HgXe 

Rydberg E*(n)̂  E*(n) ̂ AE(n) D*(n) ® 

series n* (gv) "2 (eV) (eV) (eV) 

Xe(5p5(2p̂ /2) nd [|]°) 

n = 6 3.715 12.450 3.781 12.399 -0.079 -0.106 
(995.84 Â) (1000.0 A) 

n = 7 4.707 12.822 4.785 12.756 -0.067 -0.094 
(966.94 A) (972.0 I) 

n = 8 5.730 13.022 5.775 12.942 -0.080 -0.107 
(952.12 Â) (958.0 Â) 

n = = 13.436 13.350 -0.086 -0.114 
(922.75 A) (928.73 Â) 

up 3p°) 

n = 6 1.545 11.005 10.977 -0.0280 -0.055 
(1126.63 Â) (1129.5 1) 

Hg(5d̂ (̂ D3/2) np V) 

n = 7 2.819 13.128 , 
(944.46 A) 

13.051 
(950.0 A) 

-0.077 -0.104 

n̂* and n* are the effective principal quantum numbers for the 

atomic and molecular Rydberg states, respectively. 

R̂eferences 32-34. 

c + 
Autoionization peak observed in the PIE curve for HgXe . 

'̂ AE(n) = E*(n) - E*(n). 

T̂he potential energy of Hg •Xe*(n) or Hg*(n) • Xe at the equi­

librium bond distance of HgXe calculated using Eq. (1). 
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(E*(n)) and the corresponding peak position in the HgKr̂ (HgXê ) spec­

trum (E|(n)), the interaction potential energy (D*(n)) between an ex­

cited Rydberg Kr(Xe) atom and a Hg atom at the equilibrium distance (Re) 

of HgKr (HgXe) can be calculated by the equation 

D*(n) = E*(n) - E*(n) + D̂ (HgX) (1) 

Here, X represents Kr or Xe. The calculated values for D*(n) using 

Eq. (1) are listed in Tables 2 and 3. The values for the series limits 

E*(n->-«>) were determined by fitting the observed Rydberg states of HgKr 

and HgXe to the standard Rydberg equation. Using Eq. (1), the potential 

energy D*(n-̂ =°) due to the interaction of Hg and Kr"*" (Xe"*") at Re (HgKr) 

(Re(HgXe)) is calculated to be 0.147 eV (0.114 eV). It has been shown 

previously in similar systems that the value for D* (n (») of a dimer 

ion is consistent with the prediction from a charge induced-dipole in­

teraction, V = -ê  a/2 Rê . The polarizability for Hĝ  ̂is equal to 

5.03-5.17 Assuming V to be equal to D*(n-»#), we obtained a value 

of 3.96-3.99 Â for Re(HgKr) and 4.22-4.25 Â for Re(HgXe). These values 

are in excellent agreement with those determined by previous spectro-

^ 1-6 
scopic measurements. 

Since the converging limits Ê  (n =)) for the Rydberg series 

Hg*[5d̂ (̂ D2̂ 2̂  Hg*[5d̂ (̂ Dgy2 3/2̂  np] • Xe cannot be de­

duced accurately in this experiment, it is difficult to obtain reli­

able values for Re(HgKr) and Re(HgXe) using the above method. How­

ever, the smaller values observed for D*(n) of Hg*(n) • Kr and Hg*(n) • Xe 
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in comparison with those of Hg » Kr'Xn) and Hg 'Xe*(n) are consistent 

with the fact that the polarizabilities for Kr and Xe are smaller than 

that for Hg. 
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PAST 2- STATE-SELECTED AND STATE-TO-STATE 

STUDIES OF ELECTRON TRANSFER REACTIONS 
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SECTION IV. A STUDY OF THE SYMMETRIC CHARGE 

TRANSFER REACTION + Ĥ  USING THE HIGH RESOLUTION 

PHOTOIONIZATION AND CROSSED ION-NEUTRAL BEAM METHODS 

Abstract 

A new ion-molecule reaction apparatus, which combines the crossed 

ion-neutral beam method, high resolution photoionization mass spec­

trometry, and charge transfer detection, has been developed. Using 

this apparatus, we have examined the relative total charge transfer 

cross sections of Ĥ  + H2 as a function of the vibrational state of 

Ĥ , = 0-4, at the center-of-mass collision energy (Ê  ̂  ) range 

of 0.38-200 eV. The relative total charge transfer cross sections 

measured at Ê  ̂  = 8, 16, 22.5, and 200 eV are in general agreement 

with a recent theoretical calculation based on the semiclassical 

energy conserving trajectory formulation. The vibrational energy 

effects on the charge transfer and the Ĥ  + H channels at low colli­

sion energies (E <1 eV) were directly observed. The rotation-
c.m. — 

al states, J = 0, 1, and. 2, of Ĥ (v̂  = 0) were also selected in this 

experiment. Within experimental uncertainties, the rotational exci­

tations of Ĥ (v' = 0) show no effect on the relative total charge 
I o 

transfer cross sections at E =2 and 4 eV. By calibrating the 
c.m. 

relative total charge transfer cross sections obtained with an ionizing 

photon energy of 18 eV (688 Â) to absolute total charge transfer cross 

sections determined previously using low energy electron impact ioni­

zation, absolute total charge transfer cross sections for v̂  = 0 and 1 
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in the kinetic energy range of  ̂= 8-200 eV were estimated. The 

absolute total charge transfer cross sections thus obtained for Vg = 0 

and 1 are lower than the theoretical values by approximately a factor of 

2. However, the kinetic energy dependence of the total charge transfer 

cross section is in agreement with the theoretical calculation. The 

final vibrational state distributions of the charge transfer products 

Ht from the reaction Ĥ (v' = 0) + H„(v" = 0) H (v') + Ĥ (v") at 
z / o z o z z 

 ̂= 4, 8, and 16 eV have been probed by charge transfer reactions 

Ĥ Cv") + ̂2 and Ĥ (v") + CO. The results are consistent with the 

theoretical prediction that approximately 92% and 85% of the product 

nT ions formed at E =8 and 16 eV are in the v" = 0 state, respec-
2 c • in • 

tively. 

Introduction 

Charge transfer processes represent an important class of reac-  ̂

tions in ion chemistry. When such a reaction is exothermic, it is 

usually a dominant product channel in the outcome of ion-neutral in­

teractions. Because of their large cross-sections, charge transfer 

reactions play a significant role in relaxation processes and reac­

tion kinetics in ionized gases. Therefore, the microscopic under­

standing of these phenomena is of particular interest to gas dis­

charges, lasers, flames, and controlled thermonuclear fusion research. 

Although the concentrations of ions in flames are low, thermal charge 

exchange processes are possible pathways for the conversion of ions 

into free radical chain carriers. 

At the present stage, the theory of charge exchange between 
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1-14 atomic gaseous ions and atoms is quite well-developed. However, 

the detailed theoretical understanding of charge transfer processes 

involving molecular ions, in which energy can be transferred to or 

from internal motions of molecules and/or molecular ions, is still in 

a rudimentary state. 

The symmetric charge transfer reaction 

H&v') + H„(v" = 0) H_(v') + r (v") (1) 
z o z o z 

has been the subject of many theoretical studies.The simplici­

ty of this process makes it an important system for the detailed in­

vestigation of the dynamics of molecular charge transfer processes. 

Bates and Reid̂  ̂pioneered the development of a semiclassical impact 

parameter model and applied it to charge transfer and vibrational exci­

tations in collisions. Based on the spherical interaction po­

tential and the multistate impact parameter treatment of Bates and 

18 19 
Reid, McCann et al. and Moran et al. have calculated state-to-state 

differential and total cross-sections for Reaction (1). The calculated 

total cross-sections at the center-of-mass energies (Ê  ̂  ) of 8, 78, 

and 200 eV, from v̂  = 0 to 4, were found to vary significantly with 

v'. A similar calculation on the ot + D_ charge transfer reaction, 
o z / 

which show a weak dependence of the total cross section on the vibra­

tional state of the reactant D̂ » was carried out by Stocker and Neu-

17 
mann. 

For collisions between molecular ions and molecules, it is neces­
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sary to take into account the molecular orientations. In the case of 

symmetric charge transfer reactions between molecular ions and their 

parent molecules, such as Reaction (1), the exact symmetry is broken 

by the molecular orientations with respect to the collision axis of 

the. interacting species. Reliable interaction potentials for both 

ground and excited states for different interacting geometries are 

essential for accurate cross sectional calculations. For the 

22—27 
system, considerable work has been done in the development of 

such potential energy surfaces. The most recent ab initio CI poten­

tial energy curves for the + H2 interaction have been reported by 

25 26 Cobb et al- and Borkman and Cobb. Their calculations, with the 

application to charge transfer dynamics in mind, have included sever­

al interaction geometries. 

20 
Recently, Lee and DePristo have performed a theoretical cal­

culation on Reaction (1) using the semiclassical energy conserving 

trajectory formulation (SCECT). The interaction potentials used are 

27 
derived from a simple one-active-electron model and have been shown 

to agree with the ab initio CI calculation of Borkman and Cobb. 

The accuracy of the SCECT formulation has also been demonstrated.̂  ̂

Since this latter calculation has incorporated the effects of molecu­

lar orientations in the charge exchange dynamics, it is expected to 

be more accurate than previous theoretical studies. Contrary to the 

results of Moran and co-workers,smooth variations were found 

when the calculated total cross sections were plotted versus v̂  at 
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E = 8, 16, and 200 eV. 
c.m. 

Previous experimental studies of Reaction (1) mostly involved 

total cross-section measurements as a function of kinetic energy with 

+ 31—43 + 
the reactant ions prepared by electron ionization. The 

ions formed by electron ionization can usually be assumed to have a 

broad distribution of vibrational states. There is general agreement 

that the total charge transfer cross section in collisions 

slowly falls off as a function of collision energy characteristic of 

symmetrical resonance charge transfer;̂ '̂  but it reaches a minimum 

at approximately  ̂ = 250 eV, then rises again toward higher col­

lision energy. The rise in the total cross-section at E > 250 eV c.m. 

has been attributed to increasing cross-sections for nonresonant 

p r o c e s s e s . T h e  i n v e s t i g a t i o n s  o f  H a y d e n  a n d  A m m e ^ ^  a n d  L a t i m e r  

31 
et al, indicate that the total cross section for Reaction (1) varies 

with the vibrational population of the reactant ions. 

Photoionization is the cleanest method for the preparation of 

ions with well-characterized distributions of internal states. The 

relative total cross sections for charge transfer of with as a 

function of the vibrational energy distribution of reactant ions 

44 
measured at E = 215 eV was reported by Chupka. This work clear-

c • tu* 

ly demonstrated the vibrational energy effect on the total cross 

section of Reaction (1). Using the photoion-photoelectron coinci­

dence (PIPECO) method, it is now possible to measure total cross sec­

tions for many simple ion-molecule reactions with the reactant atomic 

45-56. 
and molecular ions at specific vibrational and electronic states. 



www.manaraa.com

59 

The only reported vibrational-state-selected total cross-section 

53 
measurements for Reaction (1) was performed by Campbell et al. in 

a PIPECO study using effusive sources. Since a retarding grid 

system was used in the latter study to analyze the energy of photo-

electrons, the state-specific cross-sectional data must necessarily 

be deduced from the differences of coincidence signals with charac­

terized distributions of vibrational states. The experimental uncer­

tainties of the relative total cross sections deduced from their ex­

periments are quite large. The relative state-selected total cross 

sections were also found to vary abruptly with v'atE =8,78, J  ̂ J o c.m. 

200, and 500 eV. However, the agreement between the experimental re-

53 suits of Campbell et al. and the theoretical calculation of McCann et 

al.̂  ̂and Moran et al.̂  ̂is poor. As expected, the measured total 

charge transfer cross sections as a function of v̂  are in better agree-

20 
ment with the calculation of Lee and DePristo. 

53 + 
Furthermore, in the study of Campbell et al., the product 

ions were identified by time-of-flight (TOP) analysis. Due to in­

elastic charge transfer channels, the slow product ions can be 

scattered more than 10° away from the initial neutral beam direc­

tion. The collection efficiency in the TOP analysis for product 

ions scattered at wide angles is poor. Depending on the experimen­

tal arrangement, inelastic charge transfer can also cause the arrival 

time of the product ions to spread out in a wider temporal inter-

45 46 
val. When charge transfer is the only open channel, ' TOP analy-
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sis usually allows the identification of the fast reactant and slow 

product ions. For the reaction of Hg + Hg, at low collision energies, 

E <8 eV, where the cross sections for the formation of Ht + H by 
c.m. — 3 

the reaction 

Ĥ (v') + H-(v" = 0) + HÎ + H (2) 
Z O Z O J 

become appreciable,̂  ̂TOF method might not be able to distinguish the 

and charge transfer product ions. In view of the fact that the 

collection efficiency and the TOF resolution are governed by opposing 

factors, the TOF method is not appropriate for study of Reaction (1) 

at low collision energies. 

We note that preliminary measurements on the relative total cross 

sections of Reaction (1) as a function of the vibrational state of 

+ 58 
the reactant ions have also been measured by Cole et al. in a 

PIPECO experiment using the effusive beam and TOF methods. They have 

been able to extend the study to higher vibrational states. Their 

experiment has suffered from similar difficulties as discussed above. 

The work of Chupka and Berkowitz,̂  ̂ Berkowitz and Chupka,̂  ̂

62 Dehmer and Chupka shows that because of the dominance of autoioniza-

tion with Av = -1 over predissociation, at vibrational states v̂  = 

0-5 can be prepared with high purity by the simple photoionization meth­

od. This requires the photoionization of at higher resolution to se­

lect specific autoionization peaks and to minimize the contribution from 

direct photoionization processes. The fact that autoionization proc-
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esses are much stronger than direct ionization in allows the prepa­

ration of (v̂ ) at higher intensity than can be prepared by the PIPECO 

method. Due to selection in autoionization and the energy constraint, 

the = 0) ions can be produced in specific rotational states J = 

0, 1, and 2 by using the high resolution photoionization method. 

Anderson et al.̂ '̂̂  ̂and Houle et al.̂ '̂̂  ̂have performed several 

state-selected experiments involving by the photoionization and 

guided beam methods with a wavelength resolution of 4 A. Although the 

guided beam technique makes possible the formation of the reactant 

beam at well-defined translational energies, the low sensitivity of the 

photoionization source has prevented the study of these reactions in a 

crossed ion-neutral beam arrangement. By using the very high résolu-

+ 62 
tion PIE spectrum for of Dehmer and Chupka to estimate the ratio 

of direct to autoionization, along with Franck-Condon factors deduced by 

photoelectron spectroscopŷ  ̂to estimate the vibrational state distribu­

tions from direct ionization, they have estimated the vibrational dis­

tributions of formed by low resolution photoionization in the wave­

length region of 745-805 Â. However, the errors for cross-sectional 

data deduced by using the estimated vibrational distributions are ex­

pected to the accumulative through the whole data set. 

We have successfully combined the high resolution photoioniza­

tion mass spectrometric method and the crossed ion-neutral beam tech­

nique to examine the vibrational, rotation, and kinetic energy ef­

fects on the total cross sections for Reaction (1). By using the 

crossed ion-neutral supersonic beam technique, we have not only mini­
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mized the secondary reactions of the charge transfer ions with 

background neutral molecules to form + H at low kinetic energies, 

but also attained higher kinetic energy resolution as compared to us­

ing an ion beam-gas cell experimental arrangement. Direct observation 

in the competition between charge transfer and the formation of at 

E < 1 eV was made for the first time. We have also developed a 
c.m. — 

charge transfer detector which was used to probe the vibrational state 

distribution of the product ions. A preliminary report of this 

study has been published. This paper presents a full account of the 

experimental results in the context of its comparison to theoretical 

predictions. 

Experimental 

A brief description of the experimental arrangement and proce-

0 Q 
dures have been reported previously. After the preliminary work, 

the experimental setup has been modified to incorporate a charge ex­

change detector which allows the examination for the vibrational 

state distribution of the product ions. The crossed ion-neutral 

beam apparatus is developed from a high-resolution photoionization 

mass spectrometer.̂  ̂ The apparatus essentially consists of a 3-m 

near normal incidence vacuum ultraviolet (VUV) monochomator (McPherson 

2253 M), a discharge lamp, a VUV light detector, two supersonic beam 

production systems, two quadrupole mass spectrometers, and two reac­

tion gas cells. 

The basic pumping arrangement is similar to that described in 
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Réf. 69. Figure 1 shows the detailed cross-sectional view of the dif­

ferential pumping arrangement, the supersonic beam production systems, 

quadrupole mass spectrometers, photoionization region, collision re­

gion, and reaction gas cells. The lower nozzle (1), which was posi­

tioned at a distance of 'V' 0.65 cm from the photoionization region, 

has a quartz nozzle tip (2) with a diameter (D̂ ) of 60 ym. Using a 

hydrogen stagnation pressure (P̂ ) of ̂  200 Torr, the pressure in the 

photoionization chamber was ̂ 2 x 10 ̂  Torr. By moving the nozzle 

close to the photoionization region, a reactant beam with higher 

intensity can be formed. A quartz nozzle tip is used in order to mini­

mize the perturbation of the electric field by the nozzle in the photo­

ionization region. The reactant ions formed by photoionization at 

the photoionization region were extracted perpendicular to the beam 

and focused onto another neutral supersonic beam at an intersecting 

angle of 90°. The neutral reactant beam was produced by a super­

sonic expansion through the upper stainless steel nozzle (6) with = 

120 Um at = 250 Torr and then collimated into the scattering chamber 

by a 0.75 mm diameter conical skimmer (7). The intensity of the 

reactant ion beam was monitored with the vertical quadrupole mass 

spectrometer (13). The intensity of the slow product ions formed 

in the collisions were measured by the horizontal quadrupole mass 

spectrometer (14) positioned in the direction of the neutral reac­

tant beam. The horizontal quadrupole mass spectrometer can be floated 

at a DC potential up to ± 400 V with respect to ground. Since the 

horizontal mass spectrometer allows the identification of Ĥ , and 
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Figure 1. Cross sectional view o£ the crossed ion-neutral beam photoionization apparatus. 

(1) lower 11̂  supersonic nozzle, (2) quartz nozzle tip, (3) inlet, (4) elec­

trostatic deflector, (5) H2 inlet, (6) upper H2 supersonic nozzle, (7) skimmer, 

(8) grid 1, (9) grid 2, (10) grid 3, (llv) vertical gas cell, (lib) horizontal 
gas cell, (12) platinum grid, (13) vertical quadrupole mass spectrometer, (14) 
horizontal quadrupole mass spectrometer, (15) gas inlet, (16) to Baratron 
manometer, (17) horizontal gas cell chamber, (18) aperture 
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formed in the collisions, the study of Reaction (1) can be ex­

tended to low collision energies. The pressures maintained in the 

-4 upper beam source chamber and the scattering chamber were 10 and 

"V 2 X 10 ̂  Torr, respectively. The vertical and horizontal quadru-

pole mass spectrometer chambers were evacuated by a liquid-nitrogen 

(LN̂ ) trapped 4-in diffusion pump. With the upper H2 beam off, the 

base pressure in the mass spectrometer chambers was ̂  2 x 10 ̂  Torr. 

During the crossed ion-neutral beam experiment, the detector chambers 

-7 
maintained a pressure of ̂  8 x 10 Torr. 

The ion exit aperture of the repeller at the photoionization re­

gion was covered by a high (90%) transmission gold grid. This avoids 

the distortion of the electric field maintained at the photoionization 

region by field penetration due to adjacent focusing ion lenses. The 

collision region was also shielded by a small square ion lens and 

three 90%-transmission gold grids (8), (9) and (10) for a similar rea­

son. 

Previous studies show that because of inelastic charge 

transfer channels, the slow product ions can be scattered more than 

± 10° away from the initial neutral reactant beam direction. For ac­

curate measurements of total charge transfer cross sections, it is 

important to have high collecting efficiency for inelastic charge 

transfer product ions scattered at wide angles. Based on the geo­

metric angle sustained by grid 1 at the collision center, the ion 

lens system of the horizontal mass spectrometer is capable of ac­

cepting product ions scattered ± _< 25° away from the neutral 
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bean direction. The actual transmission through the horizontal mass 

spectrometer may depend on the scattering angle. A simple analysis 

based on the Newton diagram of the scattering involving a 2 eV 

ion beam and a supersonic beam at 90° predicts that charge transfer 

product ions formed with the change of one vibrational quantum can 

be scattered ± 23° away from the neutral beam direction. The scat­

tering angles for inelastic charge transfer product ions will be­

come smaller as the collisional energy increases. At lower collision 

energies, the scattering angles for inelastic charge transfer prod­

uct ions are expected to be large. However, since resonance charge 

transfer is the dominant charge transfer channel at low collision 

energies, it should not be a problem here. 

The laboratory collision energy is defined by the differ­

ence in potential between the photoionization and collision regions. 

In order to achieve high resolution in kinetic energy, it is neces­

sary to minimize the repeller field strength at the photoionization 

region. For a given electrostatic field applied to the repellers, 

the resolution in kinetic energy of the reactant beam is governed 

by the height of the photon beam at the photoionization region. Using 

a 3-m monochromator in this experiment, the height of the photon beam 

is estimated to be < 1 mm. Typical repeller field used for = 

16-400 eV was 10 V/cm. At lower collision energies, the focusing 

and ion transportation required low repeller fields. The repeller 

field used for E, , = 0.75 eV was 1.5 V/cm. The actual kinetic 
lab 

energy resolution of the reactant ion beam can be measured by the 
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retarded field method. This involves measuring the reactant ion 

intensity by the vertical mass spectrometer as a function of retard­

ing potential applied to the grid 2 at the collision region. The 

retarding potential analysis of the reactant ion beam having a 

nominal laboratory collision energy of 16 eV is shown in Figure 2. 

The retarding voltage is a measure of the potential of grid 2 with 

respect to that at the center of the repellers at the photoioniza-

tion region. It can be seen from Figure 2 that the reactant 

beam intensity observed by the vertical mass spectrometer rises 

sharply at a retarding voltage of 15.7 V. The further increase in 

ion intensity for retarding voltages below ̂ 14 V is due to focusing 

33 72 
effects. Similar observations ' were reported previously in energy 

analysis of ion beams by the retarding field method. The half width 

of the sharp rise of 0.2 V was taken to be the laboratory kinetic energy 

resolution of the reactant beam. Knowing the repeller field and 

the energy spread, the height of the photon beam at the photoioniza-

tion region is calculated as 0.5 mm, a value consistent with the 

estimation. 

During the experiment, the square ion lens, grid 1 (8) and grid 2 

(9) are at the same potential, while the potential of grid 3 (10) was 

varied to maximize the collecting efficiency of the product ions. 

Depending on the collision energy, the potential of grid 3 was set in 

the range of 0.1-14 V more negative with respect to the potential 

of grids 1 and 2 and the square ion lens. This range of extraction 
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Figure 2. Retarding potential energy curve for a reactant 

ion beam with a nominal laboratory collisional 

energy of 16 eV 
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voltage corresponds to a range in electrostatic field strength of 

0.4-6.2 V/cm. Since high extraction field can also degrade the 

resolution for the lowest possible extraction field should be 

used after achieving the maximum collecting efficiency for the prod­

uct ions at a given collision energy. The reason that a high col­

lecting efficiency can be obtained with a weak extraction field is 

mainly due to the favorable accepting angle of the horizontal mass 

spectrometer for the product ions. 

For the experiment at a nominal laboratory collisional energy 

of 16 eV, an extraction field of 2 V/cm was used. We estimated that 

the spread in collision energy caused by this extraction was less than 

0.2 V. Because of translational cooling and narrow angular spread of 

the neutral reactant beam achieved by supersonic expansion, the 

collision energy spread due to the neutral reactant beam is expected 

to be negligible. Taking into account the kinetic energy of 0.1 eV 

associated with the neutral reactant beam, a nominal laboratory 

collision energy of 16 eV actually corresponded to  ̂= 7.9 ± 0.2 eV. 

If an ion beam-static gas arrangement is used, the energy spread (AE) 

for a given value of  ̂due to the target gas motion alone is pre­

dicted̂  ̂to be 

AE = (11.1 ykT E (3) 
c • in • 

where y is the ratio of the projectile ion mass to the total mass 

(projectile + target), k is the Boltzmann constant, and T is the tern-
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perature of the gas cell. Assuming T = 300 K, for a equal mass sys­

tem such as , AE = 1.2 eV when E =8 eV. Therefore, the 
2m  ̂ c » m* 

kinetic energy resolutions achieved in this experiment are signifi­

cantly better than those attained in previous state-selected ion-

45-58,63,66,74-76  ̂
molecule reaction studies using the ion beam-gas cell 

or single gas cell methods. 

At  ̂£ 1 eV, by using a neutral He beam to replace the neutral 

reactant beam, we found that a small fraction of reactant ions 

could be scattered into the horizontal mass spectrometer even though 

the extraction field between the square ion lens and grid 3 was zero. 

This problem was partly alleviated by placing a gold-coated copper 

aperture (18) inside the square ion lens. The tube-like aperture ex­

tends the exit hole for the reactant ions in the square ion lens 

to 'V 0.3 mm from the collision center. As a result of a better de­

fined collision volume, the elastically scattered background re­

duced to 'V 30% that of the total signal observed by the horizontal 

mass spectrometer at Ê  ̂  = 0.38 eV. This difficulty improves dra­

matically as Ê  ̂  increases. The elastically scattered background 

at E = 1 eV was found to be < 10% of the total intensity. For 
c.m. 2 

Ê  ̂  _> 2 eV, background due to elastically scattered reactant 

ions observed with or without the aperture (8) was negligible as com­

pared to the intensity of the charge transfer product ions. 

The major impurity of the reactant ion beam in the wavelength 

region of interest in this experiment is The ions were formed 

by secondary reactions of with ambient at the photoionization 
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-f-
region. For the collision energy range  ̂= 2-200 eV, consti­

tuted less than 5% of the total ion beam intensity. However, at 

E =0.38 eV and 1 eV where small repeller fields of 1.5 and 4 V/cm 
c.m. 

were used to extract the reactant ions, the ratios of the intensity 

of to that of were 0.25 and 0.1, respectively. The ratios of 

the intensity of the elastically scattered background ions to that 

of formed by Reaction (2) observed by the horizontal mass spectrom­

eter were ̂  0.05 at E =0.38 and 1 eV. 
c.m. 

The intensity of the charge transfer product ions is directly 

proportional to that of the reactant ion beam at the collision re­

gion. The electrostatic deflector (4) shown in Figure 1 was helpful 

in optimizing the transportation of reactant ions from the photo­

ionization region to the collision region. At  ̂_< 1 eV, the ob­

tainable intensity of the reactant ions at the collision region 

was lower by more than 20 times in comparison with that at E > 
 ̂ c.m.— 

8 eV. Using a wavelength resolution of 1.4 Â (FWHM), the intensity 

observed at most autoionizing peaks in the photoionization efficiency 

(PIE) curve for at E = 16-400 eV was > 1 x 10̂  ct/s. At E = 
2 c«in* 

0.38 eV, the obtainable reactant ion intensity at the strongest 

autoionization peak at 784 Â was only 5500 ct/s. 

Depending on the value of Ê  ̂  , the ratio of the intensity for 

the product ions to that of the unattenuated reactant ions varied 

from 0.001 to 'V 0.009. In order to obtain PIE data for the product 

and ions with standard deviations better than 10%, the counting 

time used at each point varied in the range of ̂  20 to 300 sec. 
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A complete scan of the high resolution (0.14 Â or 0.28 Â FWHM) PIE 

spectra for the product ions and the low resolution (1.4 Â FWHM) 

4- + 
PIE spectra for the product H. and H_ ions at E = 0.38 and 1 eV 

 ̂ J o • d* 

required approximately 10-20 hours. 

Many experimental methods such as translational energy measure-

77-84 , . , , r. 85-88 . . 77,89 
ments, laser-induced fluorescence, emission studies, 

90 and fine structure angular distribution measurement have been used 

previously to probe the internal energy distribution of product ions 

formed in charge exchange reactions. Since the charge transfer prod­

uct ion intensity observed in a state-selected experiment such as this 

is usually less than 100 cts/s, it is difficult if not impossible to 

apply the above mentioned methods to measure the internal energy dis­

tributions of charge transfer product ions in this experiment or other 

state-selected experiments using a similar photoionization source. 

Previous state-selected charge transfer sutdieŝ '̂̂ '̂̂  ̂56,63 66 

revealed dramatic variations in total cross-sections with ion internal 

and translational energy. As a result of the favorable kinematics in 

crossed ion-neutral beam studies of charge transfer processes, it is 

possible to use the charge transfer detection method to measure the 

internal energy distributions of product ions in many simple charge 

transfer reactions. Preliminary results on the state-to-state total 

charge transfer cross-section measurements for the reactions, Ar"*" 

2 ' + 2 
( ?3/2'i/2̂  and Ar ( '̂ 2/2̂ 1/2̂  2̂' been obtained in our 

laboratory using this method. 



www.manaraa.com

73 

The calculated state-to-state cross-section for Reaction (1) at 

E = 8 and 15 eV indicate that when the reactant H' ions are in 
c.m. 2 

the v'̂  = 0 state, product Ĥ (v" = 0) ions constitute 92% and 85% 

of the product ions, respectively. For Ĥ (v" = 1), the percentages 

are ̂  7% at E = 8 eV and 13% at E =16 eV. We have used 
c • ni« c • ni • 

the charge transfer detection method to probe the vibrational distribu­

tions of the product (v") ions formed by Reaction (1) with v̂  = 0 

and 1 at E = 4, 8, and 16 eV. To illustrate the principle of the 
c.m. 

charge transfer detection method, we assume that the (v") ions formed 

by Reaction (1), with v' = 0 at E =8 and 16 eV only consist of 
•' o c.m. 

in the v" = 0 and 1 states. A more thorough description of the 

experimental details and considerations for the charge transfer de-

88 
tection method will be reported in a future publication. 

The reaction gas cells (11) associated with the ion lens sys­

tems of the vertical and horizontal mass spectrometer will be referred 

to here as the vertical and horizontal reaction gas cells, (llv) and 

(llh), respectively. After the formation of Ĥ (v") in the collisions, 

all the Ĥ Cv") ions were collected and guided through the horizontal 

reaction gas cell in which the Ĥ (v") ions further reacted with other 

probing gases. The charge transfer reactions 

HJCV") +  ̂ (4) 

Ĥ Cv") + CO Cd^ + (5) 
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were used as the probing reactions. Reactions (3) and (4) were se­

lected because of the substantial differences in total cross-sections 

for v" = 0(â „_Q) and v' = For thin target conditions, the 

measured ion intensities of N̂ [i(N̂ )] and CÔ î(CÔ )] formed via 

Reaction (3) and (4) at a given kinetic energy in the horizontal gas 

cell are related to the intensities of Ĥ (v" = 0) (Î ) and Ĥ (v" = 1) 

(Î ), the densities (n) of and CO, the effective length of the 

reaction gas cell (£), and the values for cr̂ „_Q 

Oy"_Q(CÔ ) and measured at the same kinetic energj' by the 

equations 

IQ atOv"=o(H2) + Il »A°v"=l(N2) = (6) 

Iq n£â „^Q(CO'̂ ) + = i(CO+) (7) 

Furthermore, we have the relations 

IQ + Il = I? (8) 

i(N̂ ) = n£â (N̂ ) (9) 

i(CÔ ) = I_ nia (CO"*") (10) 
1 m 

where is the total intensity for the (v") ions measured when the 

reaction gas cell was empty; Ô (N̂ ) and â (CO'*") represent the total 
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cross sections for Reactions (4) and (5) characteristic of the Ĥ Cv") 

ions formed by Reaction (1) with = 0. Combining Eqs. (6)-(10), it 

can be shown that 

=0 °&Ov"=o(N2)<'Xi (11) 

X_ nila „ _(C0+) + X, nia „ . (C0+) = n£a (C0+) (12) 
u V =u X V =1 m 

Here, and X̂  are the fractions of in the v" = 0 and 1 states, 

respectively. Since n£â „_Q(CO"̂ ), and 

n£â „_̂ (CO"̂ ) can be measured, the 2x2 linear Eqs. (10) and (11) allow 

the calculation of Xq and X̂ . If the Ĥ (v") ions only consist of 

in the v' = 0 and 1 state, the sum of the calculated values for Xq and 

X̂  should be unity. 

Xq + X̂  = 1 (13) 

The calculation of Xq and X̂  need not involve the determination of the 

absolute values for a „ a „ ̂  , and a provided that they are measured V =0 V =1 m 

at the same collision energy using the same or identical gas cell and 

a constant value of n. 

The vertical and horizontal reaction gas cells have an identical 

design. Each cell consists of a front and a back ion lens, a cylin­

drical platinum grid (12) and a cylindrical wall. The probing gas 

or CO entered through the gas inlet (15) connected to the front ion 

lens and emerged into the gas cell from a circular opening on the front 
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ion lens. This feature restricted the gas to flow in nearly the same 

direction of the ions such that reactions between and or CO 

should mainly take place in a merged beam fashion. The gas inlet 

was regulated by Granville-Phillip variable leak valve and the pres­

sure in the gas cell was monitored with a MKS Baratron manometer (Model 

370 HS-1). The reaction volume of the gas cell was defined by the 

platinum grid. During the experiment, product or CO"*" ions formed 

in the cell were trapped inside the platinum grid by applying a high 

positive potential to the cylindrical wall of the cell. The front 

lens and the platinum grid were at the same potential, whereas the 

potential of the back ion lens was slightly lower than the grid so 

that the product ions could be extracted and sampled by the mass spec­

trometer. 

The horizontal reaction gas cell and the ion lens system of the 

horizontal mass spectrometer were enclosed by the horizontal gas cell 

chamber (17). In this experiment, the gas cell chamber was connected 

with the horizontal mass spectrometer chamber and evacuated by the 

-3 
same LNg-trapped 4-in diffusion pump. For a pressure of ̂  1 x 10 

Torr in the horizontal gas cell, the pressure in the mass spectrometer 

-6 chamber was maintained at ̂  3 x 10 Torr. By combining the gas in-

let design and differential pumping, the or CO background ions 

formed at the collision region were found to be negligible in com­

parison to product or CO"̂  ions formed in the horizontal gas cell. 

The vertical reaction gas cell can be used to measure the values 



www.manaraa.com

77 

for nJlâ M̂ QCN̂ ) , , naô n̂ gCCÔ ), and niô „_̂ (CÔ ). We 

found that the reactant ions formed at the photoionization region 

can be bent and sent through the horizontal gas cell by adjusting 

the voltages of grid (1), (2), and (3) with only moderate loss in in­

tensity. Therefore, the parameters nJlâ „_Q, nS,â „_̂  and n£â  were 

all measured using the horizontal gas cell. 

Results and Discussion 

Figure 3 compares the PIE curves for the product ions ob­

served by the horizontal mass spectrometer at several collision energies 

using a wavelength resolution of 1.4 Â (FWHM) and the PIE"curve for 

the reactant h"̂  ions recorded with the same wavelength resolution. 

The latter spectrum was obtained with the neutral reactant beam 

off. As expected, the spectrum for the reactant ions was found 

to be independent of the kinetic energy for the reactant which 

was defined to be the difference in potential between the photoioniza­

tion and collision regions. Since the standard deviations for these 

low resolution PIE data were better than 2%, the PIE data were con­

nected by solid or dashed lines. The PIEs of the product and reac­

tant ion spectra in the region of 790-805 Â, which corresponds to 

4-
the formation of in the ground vibrational state, were arbitrarily 

normalized to have the same values. From the comparison of these low 

resolution spectra, it is obvious that the total charge transfer 

cross section for Reaction (1) (â ,(Ĥ )) depends on both the vibra-
o 
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> 45 eV 
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Figure 3. The comparisons of PIE curves for the product ions 

( ) formed at equals to (a) 8 eV, (b) 16 eV, (c) 

45 eV, and (d) 400 eV with that for the reactant 

ions ( ) in the region of 730-810 Â. The PIEs for the 
product and reactant ions in the region of 790-810 Â, 

which corresponds to the formation of ~ 

normalized to the same values (wavelength resolution = 
1.4 Â (FVJHM)) 
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tional and kinetic energies of the reactant ions. At = 

8 eV (Figure 3(a)), the PIEs for the product ions in vibrational 

states 2 1 are approximately 50% higher than those for the 

reactant ions, an observation consistent with the conclusion that 

(Ĥ ) increases with vibrational excitations of the reactant 

° + 
ions. The vibrational enhancement for manifested by the spec-

o 
tra at = 16 eV (Figure 3(b)) has reduced considerably. As 

increases to 45 eV, Figure 3(c) shows that , (̂ 2) is inhibited by 

+ ""o 
vibrational excitations of the reactant ions. At E, , = 400 eV, 

z lab 

the vibrational enhancement for ) is again evident from the 
o 

comparison depicted in Figure 3(d). The vibrational effect on the 

total cross section for charge transfer between with at Ê ^̂  = 

400 eV revealed in the comparison in Figure 3(d) is consistent with 

44 
that observed at Ê ^̂  = 430 eV by Chupka. The difference in PIE 

between the product and reactant ion spectra at Ê ^̂  ~ 16 and 

400 eV was found to diminish gradually toward higher photon energies 

in the wavelength region of 740-735 Â, indicating that 

+ + 
and are probably lower than '̂ v'=2̂ 2̂̂ ' 

o o o 

a , _(ut) at Ê  , = 16 and 400 eV. 
V =3 2 lab 
o _j_ 

The PIE data for the product ions in the region of 743-809 Â 

observed at Ê  ̂  = 2, 4, 8, 16, 22.5 and 200 eV using a wavelength 

resolution of 0.3 A (FWHM) are plotted in Figure 4(b), Figures 5(a), 

5(b), 5(c), 5(d), and 5(e), respectively. Similar to the procedures 

used by Chupka and co-workers, relative values for 0̂ ,(Ĥ ) were deduced 
o 
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by comparing the intensities of corresponding autoionization peaks 

resolved in the spectra for the product and reactant ions. How­

ever, instead of using the relative heights of autoionization peaks 

above the apparent continuum, the relative areas of autoionization 

peaks above the apparent continuum are used here. Because of the low 

signal level for the product ions obtainable in a high resolution 

experiment, using the peak areas is necessary to reduce the uncer­

tainties for the derived relative values of â ,(Ĥ ) due to counting 
o 

statistics-

Figure 4(a) displays the PIE spectrum for the reactant ions 

measured by the vertical mass spectrometer using an optical resolu­

tion of 0.3 A (ÏTJHM). Most of the autoionization features found in 

this spectrum still consist of more than one autoionization states. 

Nevertheless, the resolution used is sufficiently high to allow for 

the correction of photoionization yields arisen from direct photo-

ionization. In the wavelength range of 791-807 1., can only be 

formed in the v̂  = 0 state. The positions of the base lines, which 

account for photoionization yields from direct photoionization in 

wavelength intervals corresponding to the formation of in the v̂  = 

1, 2, 3, and 4 states, were defined by the lowest value in PIE 

measured in each wavelength interval. In arriving at the base lines 

shown in Figure 4(a), we have also assumed that direct photoioniza­

tion gives rise to uniform PIE within a vibrational interval. Since 

the positions of the base lines thus determined necessarily repre­

sent the upper limits in photoionization yield due to direct photo-
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Figure 4(a). PIE curve for̂ the H2 reactant ions in the region of 743-809 A (wavelength reso­
lution = 0.3 A (FWIIM)) 

Figure 4(b). PIE curve for the H2 product ions in the region of 750-809 Â observed at = 
2 eV (wavelength resolution = 0.3 Â (FWlltl)) 
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Figure 5. PIE curves for the product ions in the region 
of ~ 743-809 Â observed at (a)  ̂= 4 eV, 

(b) = 8 eV, (c) = 16 eV, (d) .̂= 

22.5 eV, and (e)  ̂= 200 eV using a wavelength 

resolution of 0.3 Â (FWHM) 
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ionization, photoionization yields above these base lines can be sole­

ly ascribed to autoionization. According to the above discussion, the 

shaded areas of autoionization peaks above the base line in a photon 

energy region higher than the threshold for the formation of (v̂ ) 

and below that of Ĥ Cv̂ +l) can be taken as a measure for the intensity 

of reactant ions formed in the v̂  state. Similar procedures to cor­

rect for photoionization yields due to direct photoionization can be 

applied to a PIE curve for the product ions such as that shown in 

Figure 4(b). The fact that the PIE curve for is highly structured 

makes the location of these base lines relatively straightforward. 

As a result of the weak autoionization structure found in the prod­

uct and reactant ion spectra in the wavelength region above the thresh-

hold for the formation of (v̂ =5), it is difficult to use this method 

for the determination (Ĥ ) with high accuracy. Therefore, the 
Q. " 

relative values for â ,(Ĥ ) presented here are limited to v̂  = 0-4. 

""o + 
Relative values for a ,(E_), v' = 0-4, at E = 2 eV were de-

V 6 o c • m* 
o 

termined by calculating the ratios of the shaded areas for correspond­

ing autoionization peaks resolved in the PIE curves for the product 

and reactant ions shown in Figures 4(b) and 4(a), respectively. 

The shaded areas of autoionization peaks were arbitrarily chosen for 

comparison. Relative total charge transfer cross sections for other 

collision energies  ̂ = 4, 8, 16, 22.5, and 200 eV were obtained by 

the same procedures. 

The derived values for a ,(H!f)/a ,_p̂ (H ) at E =2, 4, 8, 16, 
V Ù V'~u ^ c«ni» 0 o 
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22.5, and 200 eV are listed in Table 1 and plotted as a function of 

in Figure 6 to compare with the theoretical calculations of Lee and 

20 
DePristo. The uncertainties of the experimental values given in 

Table 1 represent the weighed deviations in ratios of the areas for 

corresponding autoionization peaks used within a vibrational inter­

val. The uncertainties due to counting statistics are in general 

smaller than the weighed deviation. The major errors for the derived 

relative cross sections are caused by finite uncertainties in locat­

ing the positions of the base lines which account for errors of 3-5% 

for , (Ĥ )/â j _Q (Ĥ ) , v̂  = 1 and 2, and 5-10% for those with v̂  = 

0̂ + + 
3 and 4. The normalized values for (H2)/â ,(H2) deduced from the 

— o 0 

ratios of the areas for corresponding autoionization peaks without 

corrections for direct photoionization are also included in- Table 1 

and Figure 6. Here, (Ĥ ) represents the total charge transfer 

cross sections for the reaction characteristic of reactant 

ions formed under the selected autoionization peaks. The relative 

values for t_Q(̂ 2̂  at  ̂= 4, 8, and 200 eV reported by 
00 

Campbell et al. are also included in Table 1 and Figure 6. The latter 

values were obtained by scaling the plots shown in Figure 1 of Ref. 

53. The values for a ,(Ĥ )/o , -(Ĥ ) are found to be close to those 
<V / V — u z 

+ + ~ ° ° + 
for a ,(H_)/a indicating that H„ ions produced under the se-

V Z V —u z z 
o o + 

lected autoionization peaks are dominated by ions in a particular 

vibrational state even before corrections for photoionization yields 

from direct photoionization. Furthermore, since no baseline correc­

tions are involved in the derivation of , (Ĥ )/CT̂ t ), the similar 
— o o 
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Table 1. Relative total cross sections Ô , (Ĥ )/Cî i^qCĤ ) for the 

charge transfer reaction H„(v') with H-(v"=0) at E = 
z o iL o c.m. 

2, 4, 8, 16, 22.5 and 200 eV as a function of the vibra­

tional quantum number v̂  of 

E c.m. 
(eV) 

v' 
0 — o o 

Cv' 
o 
^̂ 2̂ °̂'v'=0 

0 
(Hg) 

E c.m. 
(eV) 

v' 
0 — o o 

Experimental 

This work̂  Ref. 53'̂  Theoretical̂  

2 0 1.00 1.00±0.02 
1 1.55 1.64±0.04 
2 1.62 1.75±0.07 
3 1.50 1.54±0-04 
4 1.39 1.36±0.02 

4 0 1.00 1.00±0.03 1.00 
1 1.39 1.47±0.04 1.52 
2 1.43 1.52±0.06 1.61 
3 1.36 1.38±0.04 1.38 
4 1.25 1.22±0.11 1.33 

(Ĥ ) represents the total charge transfer cross section for 

+ + 
the H„-H_ system characteristic of reactant H„ ions formed under se-

4» if-
lected autoionization peaks. The values for (H2)/â ,_Q(H2) are 

— 0 o 
deduced from the ratios of the corresponding areas of autoionization 

peaks resolved in the product and reactant spectra without the cor­

rections for direct photoionization. 

T̂he uncertainties represent the variations in the ratios of the 
corresponding areas of the autoionization peaks in the PIE curves for 

the product and reactant ions. 

'"Values obtained bv scaling the nlot shown in Figure (1) of Ref. 
(53). 

R̂eferences (20) and (68). 
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Table 1. continued 

O o 
E , _ .„+v /»+\ Experimental 
c.m. <̂v' (̂ 2̂  ̂v' -'• 2̂  This work Réf. 53 Theoretical 
(eV) — o o=0 

0 
1 
2 
3 
4 

1.00 
1 .28  
1.35 
1.24 
1.14 

1.00±0.03 
1.32±0.03 
1.41±0.04 
1.28±0.06 
1.07±0.04 

1 .00  
1.40 
1.38 
1.37 
1.20 

1 . 0 0  
1.24 
1.32 
1 .26  
1.13 

16 0 
1 
2 
3 
4 

1.00 
1.04 
0.98 
0.94 
0 . 8 8  

1.00±0.03 
1.04±0.02 
0.95±0.03 
0.88±0.04 
0.76±0.05 

1.00 
0.98 
0.90 
0 . 8 2  
0 . 6 8  

22.5 0 
1 
2 
3 
4 

1.00 
0.95 
0 . 8 6  
0 . 8 2  
0.78 

1.00+0.04 
0.94+0.05 
0.83±0.05 
0.75=0.05 
0.62+0.07 

1.00 
0.95 
0 . 8 6  
0.77 
0.61 

200 0 
1 
2 
3 
4 

1.00 
1.24 
1 .2 6  
1 . 2 2  
1.18 

1.00±0.03 
1.27+0.02 
1.32±0.04 
1.27±0.05 
1.22+0.04 

1.00 
1.19 
1.15 
1.10 
1.10 

1 .00  
1.25 
1.35 
1.26 
1.03 
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Figure 6. Relative total charge transfer cross sections a(v̂ )/o(v̂  = 0) for the reaction 

ll̂ (v') + Ĥ (v" = 0) plotted as a function of vibrational quantum number v\ 

<=) Cc.m. ° Z Gc.m. ' '' \.n,. " " \.n,. " " 
E = 22.5 eV, (f) E = 200 eV. (•) This work; (o) this work, obtained 
c.m. c.m. 
without corrections of direct photolonlzatlon; (V)  Ref. 53;  (+) Theoretical, 
R c f .  2 0  
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trends observed for %, (̂ 2̂  ' =0 ̂ 2̂̂  '̂ <v ' ̂̂ 2̂  ̂"̂ v ' =0 ̂ 2̂̂  
o o — o o 

energies can be taken as a support that the general trends for 

, (Ĥ )/cTy,_Q(H2) on v̂  determined here are reliable. 
o o 

The best agreement between the experimental results and theo­

retical calculations of Lee and DePristo was observed at E =22.5 
c.m. 

eV as shown in Figure 6(e). The value for , _Q (Ĥ ) was found 
o o 

to decrease monotonically with v̂ , consistent with the comparison of 

the low resolution spectra depicted in Figure 3(c). The experimental 

values for « (̂ 2 ) ' =0 ̂ 2̂̂  ' ~ ĉ m ~ higher 
00 

than the corresponding calculated values by 5-10%. The careful 

analysis of repetitive scans at  ̂= 16 eV indicates unambiguous­

ly that the value for is higher than that for â ,_Q(Ĥ ). 
''o o 

At E = 8 eV (Figure 6(c)), the value for a ,_n(H_) is the lowest 
C.m* V —u z 

o 
in comparison with those for v̂  = 1-4. The profile for the vibra­

tional dependence of O , (Ĥ ) determined here was again found to be 
o 

consistent with the theoretical prediction. Within experimental 

uncertainties, the relative values for (Ĥ ), v̂  = 0, 3, and 4 are 
o 

in agreement with the calculated values. However, the theoretical 

calculation seems to underestimate the values for , (Ĥ ) « = 1 

+ ° 
and 2, with respect to that for by approximately 10%. Un-

° 53 
like the experimental results of Campbell et al., which show a 

maximum for (Ĥ ), both theory of Lee and DePristo and experi-
0̂=1 + 

mental results of this study indicate that the value for 0̂ ,(Ĥ ) is 
o 

peaked at v' = 2 at E = 8 eV. The trend observed for 
o c.m. 
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0̂ , ,_Q = 1-4, at  ̂=4 eV, is similar to that 
Vq o c.m.  ̂

found at E = 8 eV except that the difference between O , ,(H„) and 
c.m. V -1 z 

+ ° 
o , .(H_) at E = 4 eV is greater than that at E = 8 eV, Tak-V =0 2 c.m. ° c.m. 

0 

ing into account the error limits of both experiments, the results 

of Campbell et al. are in agreement with those determined here at 

E = 4 eV (see Figure 6(b)). Of all the collision energies in-
c.m. 

vestigated in this study, the greatest vibrational enhancement for 

Reaction (1) was observed at E = 2 eV. As will be shown in a lat-
c.m. 

ter section, there is evidence that the vibrational effect actually 

starts to diminish as the collision energy further decreases from 

E =2 eV. No theoretical results are available for comparison 
c.m. 

at E =2 and 4 eV. Due to the semiclassical nature of the SCECT 
c.m. 

formulation and the fact that the calculation has not included the 

+ H channel, which is a dominant product channel at low collision 

energies, the theoretical calculation of Lee and DePristo is not ex­

pected to be accurate at low collision energies (Ê  ̂  < 8 eV). 

22 92 + Previous studies ' of the potential energy surface by the 

diatomics-in-molecules method have provided insight into the charge 

transfer process for the system. Resonance charge transfer 

essentially involves the crossing of a barrier of the ground state 

adiabatic surface which divides the two charge transfer states. The 

barrier, which arises from an avoided intersection between the ground 

and the first excited electronic surfaces of Ĥ , has a height dependent 

on the distance. At a distance of > 4.2 1, the calcula-
2 2 2 2 — 
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tions show that the reactant pair Ĥ (v̂ =0) + (v̂ =0) at zero collision 

energy cannot cross the barrier. For shorter distances, the bar­

rier is reduced as a result of a larger splitting between the ground and 

the first excited surfaces; and the reactants, even in their ground vi­

brational states, can traverse the barrier. At low collision energies, 

the interaction between and is mainly governed by long-range 

forces, and large impact parameter collisions will contribute more to the 

charge transfer cross sections. Furthermore, one also anticipates 

that resonance charge transfer will become more important as the col­

lision energy is lowered. Since vibrational excitations of the reac­

tants will afford the crossing of the barrier, the calculations pre­

dict vibrational enhancements for Reaction (1) at low collision 

energies. Stemming from the expectation that the barrier is higher 

for a larger impact parameter, these calculations also imply a great­

er inhabitation for Reaction (1) with v' = 0 as the collision energy 
o 

decreases. The experimental observations, that the relative values 

for a ,(H]̂ )/a (Ĥ ), v' = 1-4, remain relatively unchanged, while 
V Z V —o z o 
° ° + + 

the difference between a , _(H_) and O , (̂H_) increases as E de-V =0 2 V =1 2 c.m. 
0 o 

creases in the range of  ̂= 2-8 eV, are in complete accord with 

this picture. 

According to the above discussion, one might expect that the 

Franck—Condon factors for the ionization transitions between the vi-

~ 1 + + ~ 2 + 
brational ground state of and vibrational states of 

will play a role in the vibrational dependence of (Ĥ ) at low col-
o 
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lision energies. The Franck-Condon factors for the transitions 

from the ground vibrational state of v"=0) to Ĥ (X 

v̂ =0,l,2,3, and 4 are 0.0925, 0.1754, 01960, 0.1700, and 0.1274, re-

93 spectively. If the Franck-Condon factors were the sole parameter, 

which determines ,(̂ ) should be proportional to the square 
o o 

of the corresponding Franck-Condon factor. This predicts the values 

for a ,(Ĥ )/a v' = 0-4 to be 1, 3.60, 4.49, 3.38, and 1.90, 
V Z V —U «U 0 

0 0 

respectively. The fact that rigorous theoretical treatments of the 

dynamics for symmetric charge transfer do not reveal a simple Franck-

Condon factor dependence for it is thus of no surprise to 
o 

find that the vibrational enhancements observed at E = 2, 4, and 
C • ̂ • 

3 eV are less pronounced than that predicted by the Franck-Condon fac­

tor alone. Nevertheless, it is interesting to note that the vibra­

tional dependences of (Ĥ ) measured at  ̂= 2, 4, and 8 eV are 
0 

in qualitative agreement with the Franck-Condon factor prediction. 

The magnitude of the vibrational enhancements observed at E = ° c.m. 

200 eV (Figure 6(f)) is comparable to that found at Ê  ̂  = 8 eV with 

the exception that the fall off of ,(Ê ), v̂  = 3 and 4, with respect 

+ 
to a , ~(H„) is less dramatic than that at E =8 eV. The measured v̂ =2 2 c.m. 

values for a ,(Ĥ )/a (Ĥ ), v' = 0-3, are in excellent agreement 
V Z V —u z o 
o o 

with the theoretical values. However, the theoretical value for 

(Ĥ )/â ,_Q(Ĥ ) was found to be lower than the experimental value, 
o o 

At high collision energies, such as Ê  ̂  = 200 eV, the short range 

interactions between and , which are responsible for inelastic 
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charge transfer processes, are expected to play a more important role 

in charge transfer collisions. Since the number of near resonance 

product channels becomes greater as the vibrational energy for the 

reactant ion increases, the slow drop off of v̂  = 3 and 

+ o 
4 with respect to observed at  ̂= 200 eV is probably 

o 
due to higher cross sections for nonresonant charge transfer channels. 

The calculation indeed shows that the cross sections of many off-

resonant product channels at E = 200 eV are as large as those of 
c.m. 

20 
the resonant channels. We note that the interaction potential based 

on the one-active-electron model, which was used in the dynamical cal­

culation, shows the least agreement with the ab initio CI calculation 

at short distances. Therefore, the discrepancy observed between 

the experimental and theoretical values for (Ĥ ),_Q(Ĥ ) can 
o o 

be partly ascribed to the inaccuracy of the one-active-electron model 

at short distances. In order to test this speculation, it would 

be helpful to extend the comparison between experimental measurements 

and theoretical calculations for v' > 4. The lower values for 
o 

, (Ĥ ) /ô , _Q (Hg ) » "̂ Q ~ 1-4, obtained by Campbell et al., might be due 
o o 

to lower collecting efficiencies for inelastic charge transfer product 

ions by the TOF method. 

The relative theoretical cross sections used in the above compari­

son are based on the average values of the cross sections calculated at 

three different initial molecular orientations. Since the strengths 

of the interaction potentials for different molecular orientations are 

different, the calculated cross sections for different molecular orien­
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tations can vary by as much as 20%. To a lesser extent, the vibra­

tional dependence for ,(Ĥ ) also depends on the initial molecular 
0 

orientation. In view of the fact that the differences found between 

the experimental and theoretical results are in most cases within 

10%, a more thorough calculation to sample more initial molecular 

orientations may reduce the discrepancies. 

The variations of (Ĥ )/â i_Q(Ĥ ) as a function of v' at dif-
o 0 

ferent collisional energies depicted in Figure 6 (a)-(f) suggest that 

the kinetic energy dependence of (Ĥ ) may exhibit structure in the 
o 

energy range  ̂= 2-200 eV. Because of the necessities to change 

the kinetic energy of the reactant ion beam and to maximize the 

-f" 
reactant H2 ion intensity at the collision region, the voltage ar­

rangement of the ion lenses between the photoionization and collision 

regions cannot be kept constant. Considering the fact that the col­

lision volume in the crossed ion-neutral beam arrangement depends on 

the focusing property of the ion lenses, the collision volume, which 

is defined by the intersection volume of the and beams, may 

also vary with  ̂. In principle, if the collision volume could 

be held constant in the energy range of interest, under thin target 

conditions, relative total cross section for Reaction (1) as a func­

tion of E can be determined by measuring the ratio i(Ĥ )/I(Ĥ ) 
c.m. L L 

at different collision energies. Here, i(Ĥ ) is the product ion 

intensity measured by the horizontal mass spectrometer and ICĤ ) is 

the reactant ion intensity measured by the vertical mass spec­

trometer with the neutral reactant beam off. In order to determine 
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0̂ ,(Ĥ ) as a function of  ̂, a correction function, which accounts 
o 

for the changes in the collision volume and the spacial distributions 

of n̂d within the collision volume, in the collision energy-

range of interest must be known. 

The previous measurements on the absolute total charge transfer 

cross sections for the system, which used low energy electron 

ionization to prepare the reactant ions, have been reviewed recent-

43 ly by Bamett et al. Within the range Ê ^̂  = 8-400 eV, essentially 

all these measurements are in good agreement that the total charge 

transfer cross section decreases monotically as Ê ^̂  increases. How­

ever, the absolute magnitudes of these measurements were found to dif­

fer substantially. The recommended values for the absolute total 

charge transfer cross sections for the reactions in the range 

Ê ^̂  = 8-400 eV are shown as the dashed line in Figure 7. The uncer­

tainty in absolute magnitude of the recommended values was estimated 

to be ± 40%. Most of the previous electron ionization studies used 

electron energies greater than 18 eV. The vibrational distribution 

of the reactant ions produced by electron ionization in the pre­

vious experiments can be characterized by the Franck-Condon factors 

of the transitions from the ground vibrational state of H.(X to 
i g 

+ 2 + 
vibrational states of H2(X 1̂ ). It is possible to produce reactant 

H2 ions with a vibrational distribution similar to those obtained in 

previous electron ionization studies by using a photon energy of > 18 

eV provided that the selected photon energy does not coincicde with 

excitation energies of autoionizing states. 
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In order to obtain the kinetic energy dependence for 0̂ ,_Q(Ĥ ), 

the relative values for the ratios i(Ĥ )(i.e., the relative to­

tal charge transfer cross sections) with the reactant ions formed 

by photoionization at wavelengths 792 Â and 688 Â were first measured 

by the crossed ion-neutral beam arrangement at fixed values of 

Since at a given value of the same voltage arrangement for the 

ion optics are used to measure the ratios i(H2)/I(H2) at 792 Â and 

688 Â, the relative total cross sections thus determined should be re-

O  ̂
liable. At 792 A, all reactant ions were formed in v̂  = 0 state, 

O 
while at 688 A, ions should have a broad vibrational distribution 

characteristic of the Franck-Condon transition probabilities between the 

ground vibrational state of (X and Ĥ CX with the high­

est value of v̂  up to 18. The photon energy corresponding to 688 Â 

(IS eV) is slightly lower than the dissociative ionization thresh-

94 
old (18.077 eV) of . The selection of this wavelength is to mini­

mize the contamination of the reactant beam by h"'" which can be 

formed by the dissociative ionization process at higher photon energies. 

The intensity of h"̂  formed by the ion-pair process at 688 X is less 

than 0.1% that of Ĥ . Assuming the vibrational distribution for 

O 
prepared at 688 A to be identical to that for formed by electron 

ionization, the values for i(Ĥ )/I(H2) measured at 688 Â in the range 

= 8-400 eV were scaled to fit the dashed line determined by 

previous electron ionization studies. The values for a(v̂ =0) de­

picted in Figure 7 were obtained by multiplying the values for 

i(H2)/I(H2) measured at 792 A with the same scaling factors at cor­
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responding collision energies. These procedures in effect allow the 

corrections for the change in collision volume as a function of 

due to focusing effects of the reactant beam and the variations in 

spatial distributions of and within the collision volume. 

The experimental values for 0̂ ,_Q(Ĥ ) thus determined reveal a 
o 

broad peak centered at ~ eV. Since the state-selected ex-

53 + 
periment of Campbell et al. only measured at = 8, 

o 
16, 156, and 400 eV, the broad maximum was not observed previously. 

Once the kinetic energy dependence of ,_Q(Ĥ ) is known, (Ĥ ), 
o o 

v̂  = 1—4, can be determined from the known vibrational dependences 

of â ,(Ĥ ) at fixed collision energies such as those listed in Table 

+ 
1. The values for ̂ 1̂=2̂ 2̂̂  l̂ab ~ 16, 32, 45, and 400 eV de-

o 
duced by this method are shown in Figure 7. It seems obvious that 

a , .(Ht) crosses below a , .(Ht) at a value of E, , between 32 and 
V =1 2 V =0 2 lab 
° + ° + 

45 eV and a (H-) recrosses above 0 ,_n(H„) at a higher value of 
V —J. Z V —U Z 
o o 

Ê b̂ between 45 and 400 eV. The precise positions of these intersec­

tions should be sensitive to the dynamics and the potential energy 

surfaces of the system. In order to locate the positions of 

the crossings and obtain a better estimate of the profile for Oy,_̂ (H2), 
o 

we have measured the ratio of the height of the autoionization peak at 

784 Â (1(784 Â)) to that at 792 Â (1(792 Â)) resolved in the PIE curve 

for the product ion as a function of Ê ^̂  using a wavelength resolu­

tion of 1.4 Â (FWHM). In these measurements, a 2 V/cm extraction field 

was maintained at the collision region and no effort was made to maxi­

mize the product ion intensity at specific collision energies. At 
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792 Â, all reactant ions were produced in the = 0 state, while 

those formed under the strongest autoionization feature at 784 A were 

predominately in the = 1 state. The measured values for 1(784 A)/ 

1(792 A) in the range Ê ab ~ 2-400 eV were plotted in Figure 8. The 

observation that the value for 1(784 Â)/(792 A) at = 2 eV is 

lower than that at E, . = 4 eV can be taken as evidence that the dif-
lab 

ference between a , _(H%̂ ) and a ,  ̂(Ĥ ) reaches the maximum at E 
V =0 2 V =1 2 lab 
o o 

4. The measured ratio of the autoionization peak intensities at 784 

Â and 792 Â in the PIE spectrum for the reactant ions is 1.48 which 

is shown as a straight line in Figure 8. It can be seen that at Ê ab 

30 eV and > 120 eV, a (Ĥ )̂ is greater than a , and in the 
V —J- Z V —U Z 
° + ° + 

range Ê ^̂  = 35-100 eV, ô _̂̂ (H2) is lower than Therefore, 
o o 

we conclude that the total charge transfer cross sections for = 0 

and 1 intersect at Ê  , ~ 33 and 115 eV. The functional form for 
lab 

â ,(Ĥ ) depicted in Figure 7, which is estimated by the measurements 

""o + 
summarized in Figure 8, is similar to that for â ,_Q(H2)-. The maximum 

for was observed at ~ eV. 
o 
The nature of the broad beak observed in the collision energy 

dependence of (Ĥ ) shown in Figure 7 has been explored by Lee et 

95 ° 
al. The theoretical cross sections for v̂ =0 calculated by Lee et 

al. were plotted in Figure 7 to compare with the experimental values. 

In the SCECT calculation, the molecular orientation was fixed with 

parallel to and perpendicular to the initial velocity. This 

configuration has been shown to provide "average orientation" results. 

Sufficient numbers of vibrational states and impact parameters were 
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Figure 8. (H H) The ratio of the Intensities for the product Ions measured at 

784 A and 792 Â [1(784 Â)/I(792 Â)] plotted as a function of the labora­
tory collision energy (Ê ^̂ ). ( ) The ratio of 1(784 Â)/I(792 X) for 

the reactant Ions 
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included in the calculation to ensure convergence of ,_Q(Ĥ ) to with-
o 

in ~ 5-10%. As shown in Figure 7, the SCECT calculation predicts a 

broad peak centered at Ê ^̂  ̂% 40 eV, in agreement with the experimen­

tal observation. The absolute theoretical values are approximately 

a factor of two higher than the experimental values. In addition to 

the numerical uncertainty, the SCECT results also contain intrinsic 

inaccuracies due to the neglect of + H and h"'" + H channels. The 

33 
measurements of Vance and Bailey indicate that in the range Ê ^̂  = 

10-100 eV the cross sections for the dissociative ionization channel 

to form h"̂  + H are nearly half those for the charge transfer channel. 

+ 
The fact that ions were formed by electron ionization with an elec­

tron energy of 80 eV the high cross sections observed for the h"̂  + H 

channel are certainly due to greater probabilities for collisional 

dissociations of ions in high vibrational states characteristic of 

electron ionization. Judging from the state-selected experiment of 

63 Anderson et al., the cross sections for collisional .dissociation of 

Ĥ Cv̂  = 0) are likely to be less than 1 Â . The cross sections for 

the Hg + H channel only become important at Ê ^̂  < 16 eV. In the 

range of Ê ^̂ =8-16 eV, previous measurements indicate that the cross 

+  ° 2  
sections for the formation are less than 4 A . The inclusion of 

these processes should definitely reduce the SCECT values (via con­

servation of probability restrictions). Taking into account the er­

ror in the absolute magnitude of the electron impact data of ̂  ± 40% 

and the uncertainty of the theoretical values of ̂  ± 30% due to nu­

merical, intrinsic, and orientation influences, the magnitudes of the 
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experimental and theoretical results are actually in reasonable agree­

ment . 

For atomic systems such as He"*" + He, the kinetic energy dependence 

of the total charge transfer cross section at high collision energies 

reveals regular oscillations.̂  ̂ These oscillations have been inter­

preted as measurements of the number of times of electron jump between 

the nuclei of the colliding pairs. It is also known that for symmetric 

electron transfer in atomic systems, a resonant two-state cross sec­

tion when plotted versus exhibits small oscillations if the coup-

12 97 98 ling has a maximum ' ' . Using the spherical interaction of Bates 

16 o 
and Reid, which has a maximum at an intermolecular distance of ̂  1 A, 

19 the calculation of Moran et al. also predicts such oscillations in 

the collision energy dependence for a(v̂ ). Since the collision energies 

involved in this study are relatively low and the couplings for the + 

system used the SCECT calculation does not have a maximum, these are 

not the nature of the broad peaks observed in the kinetic energy depend­

ences for ,(Ĥ ) v̂  = 0 and 1. 
® + 

The collisional energy dependence for based on the cal-

° _ 95 
culations for a recti-linear trajectory is also shown in Figure 7. 

The predicted profile for ,_Q(Ĥ ) is similar to that obtained using 
o 

the SCECT method. This indicates that the uses of Ehrenfest's theorem 

and the direct-direct and exchange-exchange interactions in the SCECT 

formulation to generate curved trajectories are not significant fac­

tors in the energy dependence of ,_g(Ĥ )« Interestingly, when the 
0 
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Figure 7. Comparisons of the experimental and theoretical state-
selected total charge transfer cross sections for 

the reaction = 0). Experimental values: 

( ) electron impact values recommended by Barnett et 
al. (Réf. 43); (+) o(v̂  = 0) measured at 792 Â; (A) 

a(v' = 1); (•) a(v' < 18) measured at 688 1. Theoretical 
o o — 

values: (o) a(v' = 0) SCECT; (x) a(v' = 0) linear tra-
o o 

jectory; (8) cr(v̂  = 0) 2-state 
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calculations are restricted to the two channels, resonant direct 

(v̂  = 0, = 0) and exchange (v' = 0, v" = 0), the calculated total 

95 
charge transfer cross section simply decreases monotonically as a 

function of 7). The analysis of Lee et al. shows that 

the collisional energy dependence of the SCECT resonant cross section 

also has a broad maximum centered at E, , = 40 eV, whereas the sum 
lab 

of the SCECT nonresonant cross sections increases smoothly through 

the peak region. Thus, they concluded that the initial rise 
o 

is due to the increase of both the resonant and nonresonant cross 

sections, while the decrease of at higher collision energy 
o 

(Ê b̂ > 40 eV) is a result of the fall-off of the resonant channel. 

Stemming from the consideration that the + H channel is the domi­

nant product channel at low collision energies, it is logical to be­

lieve that the decreases of (H2), v' = 0 and 1, toward lower energies 
o 

are partly due to the competition of Reaction (2). 

The theoretical analysis clearly shows that the broad peak of 

the a versus E, , curve arose from the strongly coupled mul-
V —U Z x3.u 

0 

tistate nature in the dynamics of Reaction (1). A complementary in­

terpretation could be made in terms of the transition from diabatic 

to adiabatic vibrational dynamics as the kinetic energy decreases. 

Since previous calculations for the system only indicate a 

22 92 
potential energy barrier of less than 0.5 eV, ' it is intriguing to 

find the peak at E = 20 eV. 
c.m. 

In order to have a full understanding of the reaction dynamics 

of the system at low energies, it is important to investigate 
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the competition between the + H and charge transfer channels. The 

formation of + H by Reaction (2) is among the most studied ion-mole­

cule reactions.The vibrational energy dependence for the total 

cross section of Reaction (2) (a ,(Ĥ )) has been investigated by 
Vo J 

75 47 
Chupka et al. and Koyano and Tanaka at  ̂< 1 eV using the sin­

gle gas cell method. The charge transfer and the channels 

were examined recently in a state-selected study of the reactions + 

and + by Anderson et al.̂  ̂ Because of the difficulty in dis­

tinguishing the reactant and product ions, the vibrational energy ef­

fects on Reactions (1) and (2) have not been examined simultaneously-

57 99 
There is general agreement from previous emerged beam, ' beam 

100 92 collision cell, and crossed-beam experiments that the angular 

distribution of resulted from Reaction (2) appears to exhibit the 

forward and backward symmetry at E <10 eV. The observation has 
c.m. — 

been attributed to adiabatic charge equilibrium between and prior 

to proton transfer. Thus, it is meaningless to interpret the forward 

and backward product peaks as arised from proton and atom transfer 

57 63 
mechanism. The isotopic substitution studies ' were found to be 

consistent with this picture. At Ê  ̂  < 1 eV, the merged-beam experi­

ment of Douglas et al.̂  ̂indicates that a small fraction of the reac­

tion exothermicity and the excitation energy is converted into transla-

tional energies of + H. The kinematics of the present experiment 

does not allow for favorable collection of the forward scattered prod­

uct ions. Nevertheless, the backward scattered ions can be 
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sampled with good efficiency. Figures 9(a) and (b) show the mass 

spectra observed by the horizontal mass spectrometer at = 2 and 

0.75 eV, respectively, using a photon energy of 15.81 eV (784 Â). 

These spectra also illustrate the typical resolution used in this 

experiment.Taking into consideration that approximately 10% and 

30% of the observed total intensities in Figure 9(a) and (b), re­

spectively, are due to elastically scattered background, the lower 

bounds of the branching ratios for the formations of and charge 

transfer 11̂  at , = 2 and 0.75 eV are estimates to be ̂  0.7 and 
2 lab 

3.8, respectively. Stemming from the fact that the reactant ions 

produced at 15.81 eV (784 Â), which corresponds to the strongest auto-

ionizing peak in the v̂  = 1-2 vibrational interval, are predominately 

in the v̂  = 1 state, the estimated lower limits for the branching 

ratio can be considered as state specific values for v' =1. 
o 

Figures 10(a) and (c) compare the PIE curves for the product 

ions and the reactant ions measured at Ê ^̂  = 2 eV and 0.75 eV, 

respectively. The PIEs for the product and reactant ions in the 

region of 790-805 Â have been normalized to the same values. Al­

though high resolution PIE spectra for the product ions at Ê ^̂  = 

2 eV and 0.75 eV cannot be obtained because of low signal intensi­

ties, it is clear from the comparison of Figures 3(a), 4(b), 5(a), 

10(a), and 10(c) that the vibrational enhancement becomes less pro­

nounced as Ê ^̂  decreases in the range of 4 to 0.75 eV. This obser­

vation is contrary to the prediction of the "trajectory surface hop-

21 
ping" (TSH) calculation by Stine and Muckerman which shows that the 
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Figure 10. The comparisons of the PIE curves for the product (a) 

ions at = 2 eV, (fa) ions at = 2 eV, (c) hJ 

ions at = 0.75 eV, and (d) ions at = 0,75 eV. 

The PIEs for the product and reactant ions in the region 
of 740-810 Â, which corresponds to the formation of 

(v̂  = 0), are normalized to the same values (wavelength 

resolution = 1.4 Â FWHM) 
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ratio <7 /cr continues to increase as E decreases in 
V — J Z V —u / c.a. 
o o 

the range of 3.0 to 0.25 eV. 

The comparison of the PIE curve for Ht observed at E = 0.38 eV 
3 c.m. 

(Ê ^̂  = 0.75 eV) with that for the reactant ion in Figure 10(d) in­

dicates that the formation of is inhabited by vibrational excita­

tions of the reactant ions. Since the close resemblance of the com­

parisons shown in Figures 10(d) and 3(c), the vibrational energy de­

pendence of the total cross section for the formation of ,(Ĥ )) 

+ 
should be similar to that found for a ,(H.) at E = 22.5 eV. The 

v' 2 c.m. 
o 

monotonically decreasing trend as a function of vibrational energy 

observed here for a ,(HÎ) at E = 0.38 eV is in agreement with the 
V 3 c.m. 
° 75 47 

results obtained by Chupka et al., Koyano and Tanaka at Ê  ̂  -

0.5 eV. The PIE spectrum for recorded at E =1 eV was found to 
3 c.m. 

be superimpossible with that for the reactant ion indicating that 

(Hg) is independent of A similar observation for ,(Ĥ ) at 

° 47 ° 
E =0.93 eV was reported by Koyano and Tanaka. In the state-
c.m. 

selected study of the reaction Ĥ (v̂ ) + ̂2 ̂ 2̂̂ ^̂ ' Anderson et al.̂  ̂

found that a ,(D„Ĥ ) decreases as v' increases at E <0.77 eV, while 
V 2 0 c.m.— 

+ ° + 
a ,(D„H ) is enhanced by vibrational excitations of at E 2̂ -̂  eV. 

° + 
The decrease in â ,(Ĥ ) as a function of v̂  has been suggested by Krenos 

92 ° 
et al. as due to vibrational energy induced hopping of the system 

+ 2 + 
from the ground surface [H2( Ẑ ) + Ĥ ] to the first excited surface 

+ 2 + 
[H2( which has an energy barrier to reaction. The argument 

of hopping to the excited surface has also been used to rationalize 

the vibrational enhancement in the intermediate collision energy range 
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(E 1-3 eV). Anderson et al.̂  ̂argue that the vibrational en-C • d • 

hancement in the intermediate collision energy range may arise from 

a more efficient reaction mechanism on the excited potential energy 

surface than that on the ground state. This interpretation implies 

that the potential energy barrier on the excited surface is ̂  1 eV. 

Applying the same rationalization here, this study also yields a value 

of 1 eV for the energy barrier for Reaction (2) on the excited sur­

face. 

21 
The TSH calculation of Stine and Muckerman is the only theo­

retical study at low collision energies which takes into account 

both Reactions (1) and (2), They have reported state-selected total 

cross sections on the reactions of the = 0,3,6; J' = 2) + 

H-(v" = 0; J" =1) at E = 0.25, 0.5, 1.0, 3.0, and 5.0 eV.̂  ̂ Here, 
2. o c.m. 

J' and J" represent the rotational quantum numbers for Ĥ  and Ĥ , 

respectively. At E =0.25 and 0.5 eV, the calculated value for 
c.m. 

(Ĥ ) is lower than Ĝ ,_Q(Ĥ ), while is greater than 
o 0 o 

a , „(Ĥ ) at E >1 eV. The values for a ,(nT), v' = 0 and 3 are 
v ' = 0  3  c . m .  —  v ' 2  o  
o o 

predicted to increase with increasing Ê  ̂  . The study also indicates 

that the critical impact parameter for charge exchange is larger than 

that for proton transfer, and is relatively independent of collision 

energy so that, as the latter decreases with increasing  ̂, more 

and more collisions lead to charge transfer without surmounting the 

centrifugal barrier for proton transfer. Moreover, vibrational excita­

tion in the reactant is found to greatly enhance the charge transfer 
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process at low collision energies, in accord with the qualitative 

predictions based on the accessibility of the avoided crossing seam 

on the ground state potential energy surface. With the exception 

found in the calculated kinetic energy dependence for (Ĥ )/ 

Pyi_Q(H2) and that observed here, the calculations of Stine and Muck-
o 

erman are in conformity to experimental observations. 

The rotational energy effect on the ion-molecule reaction 

B̂ Cv̂  = 0,J) + 2̂ + H has been examined previously by Chupka 

in a single chamber photoionization experiment using a wavelength reso­

lution of 0.12 Â (FWHM). They found that by changing the rotation­

al quantum number of = 0) from J = 0 to J = 2 changes the rela­

tive cross sections for the formation of by < 10%. In order for 

the rotational energy of = 0) to play a role in the symmetric 

charge transfer reaction Ĥ Xv̂ , J) 4- one expects that the time for 

molecular interaction between and in the collision should be of 

the same order of magnitude as the rotational period of 5x10 

sec). Assuming that an effective length for charge exchange interac­

tion of ̂  7 a collision time of 5x10 sec would correspond to 

a collision energy E « 1 eV. Because of the low signal inten-
c.m. 

sity at low collision energies, it is impracticable to perform high 

resolution experiments at E <1 eV. We have obtained the high 
c.m. — 

resolution (0.14 Â (FWHM)) PIE curves for the product ions in the 

region 800-808 Â at Ê  ̂  =2 and 4 eV. Figure 11 compares the PIE 

curve for the product ions at E =2 with that for the reactant 
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H2 ions. The PIE curve for the reactant ions is similar to that 

44 recorded previously by Chupka. using a similar wavelength resolu­

tion. The assignments of the autoionization peaks are based on the 

very high resolution photoionization study of Chupka and Berkowitz,̂  ̂

Berkowitz and Chupka,Dehmer and Chupka,and spectroscopic studies 

of Takezawa,̂ *̂  ̂Namioka,̂ ^̂  Monfils,̂ ^̂  Herzberg,̂ ^̂  and Herzberg and 

Jungen.̂ ^̂ . The rotational states of the reaction ions formed have 

been inferred by autoionization selection ruleŝ ^̂ '̂ ®̂  and energy con­

ing 
straint. As a result of the preference for ionization to occur with 

no change in rotational quantum number, ions resulted from autoioni­

zation of the autoionization Rydberg states Q(l) 8pTT(v=l) and R(l) and 

P(l) 8pO(v=l) should be in the J = 1 rotational state. After normalizing 

the heights of the autoionization peaks at 804.12 Â for the reactant and 

the product ions to the same value, the PIE spectra for the reactant and 

product Hg ions were found to be superimpossible (Figure 11). Therefore, 

we conclude that within the experimental uncertainty of 'v» 10%, chang­

ing the rotational quantum number of = 0) from J = 0 to J = 2 

has no observable effect on the symmetric charge transfer reaction 

Ĥ (v' = 0,J) + H- at E =2 eV. A similar observation was found 
 ̂ o ic c «ni» 

at E =4 eV. The differences of the 0-0 vibrational overlap in-
c.m. 

19 
tegral for several rotational transitions as computed by Moran et al. 

are less than 3%. If resonance charge transfer channels are dominant 

at E =2 and 4 eV, one expects the effect on the charge transfer 
o «in* 

cross-section due to rotational excitation of Ĥ (v* = 0) to be small. 
L o 
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I—Q(l) orR(l) 
J=l 

Hg + hv 

R(0).R(l) 

J=0,l 

9!!W R̂(2) 
j=o 

. y < A 

Figure 11. The comparison of the PIE curve for the product H- Ions formed at E 

2 eV with that for the reactant Ions in the region of 800.5-806.5 A 

(wavelength resolution = 0.14 Â (FWHM)) 

m. 
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The high resolution (0.3 A (FWHM)) PIE data for and CO"*" in the 

region 798-770 Â formed by Reactions (4) and (5) measured by the hori­

zontal mass spectrometer were plotted in Figure 12(a) and (b), re­

spectively. The Ĥ (v̂ ) ions were formed at the photoionization re­

gion and were bent at the collision region to pass through the hori­

zontal reaction gas cell. Both reactions were measured at = 24 eV 

which is defined to be the difference in potential between the hori­

zontal gas cell and the photoionization region. Using the same pro­

cedures as described above, the relative values for T_Q(̂ 2) : 

: '̂ v'=2̂ 2̂̂  are 1.00 : 1.63 : 1.34 and those for â i.gCCO"̂ ) : 
. o o 0 

â ,_̂ (CO"'") : CĴ i_2(C0'̂ ) are 1.00 : 0.85 : 0.79. The values for 
o o 

n£a [n&a ,__(C0̂ )] can be determined by measuring the ratio 
v —u ^ v —u 
0 o 

of the intensity of N̂ XCO ) to that of Ĥ fv̂  =-0) with the horizontal 

gas cell evacuated. By calibrating the relative cross sections with 

n£a , „(N̂ ) and n£a ,_n(CÔ ), the values for n£a , (N̂ ) and n£a , (CO"'') , 
v —u z v —u v z v 
O o o o 

v' = 1 and 2 were calculated. The values for n2ô , (N̂ ) and n£,â , (00"*"), 
o o 

v' = 0-2, which are needed for the detection of the final states of 
o 

product (v") ions, are listed in Table 2. In order to maximize the 

signal intensity of (CO"̂ ) in the final state detection experiment, 

it is necessary to lower the resolution of the horizontal quadrupole 

spectrometer to increase the transmission of N̂ (CO"̂ ). The masses of 

N̂ (CÔ ) and N2H"''(C0H'̂ ) cannot be resolved in these measurements. How­

ever, it should not affect the results of the final state detection 

110 
experiment. 



www.manaraa.com

114 
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t/i 
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o 
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< + 2̂-

E|ob = 24 eV 

' T ' ' > ' ' ' ' ' > Î > t I t I . 

§ 
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Hg + CO • CÔ  + 

E|ab = 24 eV 

-I 1 I 1 I I I I I I I L. _] I I I 
795 790 785 780 

O 

A 
775 770 

Figure 12(a). PIE curve in the region of 770-798 Â for the 

product ions formed by the reaction + 

at Ê ^̂  = 24 eV using the ion beam-gas cell 

arrangement 

Figure 12(b). PIE curve in the region of 770-798 Â for the 

product CÔ  ions formed by the reaction + CO 

at = 24 eV using the ion beam-gas cell ar­

rangement. Wavelength resolution = 1.4 Â (FWHM) 
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Table 2. Values for nZc , and nJlÔ , (CO )̂ ' v' = 0-2, deter-
o 0 

mined at , = 24 eV 
lab 

v* 
0 

n20^^(C0+)C 
0 0 

0 0.035+0.001 0.092±0.002 

1 0.057+0.004 0.078±0.002 

2 0.047±0.003 0.073±0.001 

a + + 
(N2) and â ,(CO ) represent the total cross sections for the 

+ + + 
reactions, and + CO + CO , respec­

tively. n is the density of or CO and SL is the effective length of 
the gas cell. 

T̂he resolution of the horizontal quadrupole mass spectrometer 
used in these measurements cannot distinguish the masses of N̂ (CO"*') 
and N̂ H+(COH+). 

'̂ The uncertainties represent the standard deviations due to count­
ing statistics. 

The measured values for n£,a (N̂ ) and n£a (CO"*") for Reactions (4) 
m 2 m 

and (5) at = 24 eV characteristic of product Ĥ (v") ions resulted 

from Reaction (1) at E = 4, 8, and 16 eV are listed in Table 3. 
c • m • 

Two photoionization wavelengths were used to prepare the reactant 

Ĥ (v') ions. At 792 Â, all reactant ions should be in the v' = 
ZD I o 

0 state. If resonance charge exchange is the dominant channel, i.e., 

the product ions are mostly in the v" = 0 state, the values for 

n£a (nI") and n£a (CÔ ) are expected to be close to those for nZa (N̂ ) 
m z m V —u z 

+ o 
and n&ô ,_Q(CO ), respectively. As shown in Table 3, this is the case 

° + 
here. Although the differences between the values for n£â (N2) meas-
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Table 3. Values for xiHo and nS,a (CO"*")̂ '̂  determined at E, , = 
m Z m lab 

24 eV̂  

(X)' nZa (N^)^ 
m z 

n£a (CO"*")̂  

792 4 0.031±0.003 0.097 0.004 

8 0.035±0.001 0.091 0.002 

16 G.037±0.001 0.088 0.002 

784 4 0.055±0.003 0.073 0.003 

8 0.055±0.001 0.074 0.002 

16 0.050±0.001 0.083 0.002 

ĈJ (N̂ ) and a (Co"*") are the total cross sections for the reac-
m 2 m 

tions, Ĥ (v") + and Ĥ Cv") + CO ̂  CO"'", respectively, n 

is the density of N» or CO and I is the effective length of the gas 
cell. 

T̂he resolution of the horizontal quadrupole mass spectrometer 
used in these measurements cannot distinguish the masses of N̂ CCO"*") 
and N̂ H+(COH+). 

is defined to be the difference in potential between the 

collision region and the horizontal gas cell. 

P̂hotoionization wavelength. At 792 Â, all reactant H2 ions formed 
were in the state, while at 784 A, reactant H+ ions were pro­

duced mainly in the = 1 state. The intensity of Ĥ (v̂ =0) formed at 

784 A should be _< 10% of the total beam intensity. 

6 
Center-of-mass energies of the reaction Ĥ Cv̂ ) + Ĥ Cv') + 

Ĥ Cv"). 

T̂he uncertainties represent the standard deviations due to count­
ing statistics. 
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ured at  ̂= 4, 8, and 16 eV are small, the observed trend should 

be reliable. Since the value for n2a_̂ ,(N̂ ) is lower than n2o_̂ , (N̂ ) , 
ô"  ̂ ô 

v' >1, the gradual increasing trend for n£a (N-) as E increases 
o — m / c.m. 

in the range from 4 to 16 eV is consistent with the interpretation that 

inelastic charge transfer channels become more important as the colli­

sion energy increases. The same conclusion can be drawn from the 

measured values for nilâ CCO"*"). The observed decreasing trend as a func­

tion of E for n2o (CÔ ) in the range of 4 to 16 eV is in accord with 
c.m. m 

the fact that the value for niâ î pCCO"*") is greater than n5,â , (CO"̂ ) , 
0 o 

v' = 1 or 2. 
o 

Assuming the product Ĥ Cv") formed by Reaction (1) with v̂  = 0 

at E =16 eV only consists of in the v" = 0 and 1 states, the 
c.m. I 

two linear equations, which are needed to solve for Xq and are 

0.035 X + 0.057 X̂  = 0.037 (14) 

0.092 X + 0.078 X = 0.088 (15) 

The solution for these equations are Xq = 0.86, X̂  = 0.12. 

The sum of Xq and X̂  is slightly less than one; but the difference is 

well within experimental uncertainties. The value of 0.12 for X̂  is 

found to be in excellent agreement with the theoretical prediction of 

'v 0.13.̂  ̂ In fact, Eqs. (14) or (15) can be combined with Eq. (13) to 

obtain a set of values for X̂  and X̂ . Combining Eqs. (13) and (14) 

gives a value of 0.09 for X̂ ,̂ while a value of 0.29 is predicted by 

Eqs. (13) and (15). The information content for the determination of 
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in Eq. (14) is greater than that in Eq. (15) because n£â ,_̂ (N2) 

is higher than n2ô ,_Q(N̂ ) whereas n̂ ô ,_̂ (CO'̂ ) is lower than 
""o ''o 

n&0̂ ,_Q(CO ). Thus, we expect that the value of 0.09 for deduced 
o 

by using Eqs. (13) and (14) is more reliable than that calculated by 

combining Eqs. (13) and (15). In any case, the average value of 

0.17±0.08 is probably a better estimate for X̂ . The theoretical calcu­

lation of Lee and DePristo shows that 92% of the (v") ions prod­

uct by Reaction (1) at E = 8 eV with v' = 0 are in the v" = 0 
•' c.m. o 

state. The comparison of the values for nila (N̂ ) and [nZa (CÔ )] 
m z m 

measured at E = 8 eV with those for nJla , ̂ (Nlt) and nla , _(C0̂ ) C.m. V =u z V —V 
+ o o 

indicates that (v") ions formed at Ê  ̂  = 8 eV are almost complete­

ly in the v" = 0 state. Taking into account the experimental uncer-

tainties for nio (N_) and nZo (CO ) at E = 4 eV, a similar con-
m Z m c.m. 

elusion can be made for rÏ(v") produced at E =4 eV. 
z c.m. 

The photoionization wavelength used to prepare (v̂  = 1) coin­

cides with the strongest autoionization peak at 784 Â. The intensity 

of (v̂  = 0) formed at this wavelength should be ̂  10% of the total 

hI" beam intensity.The measured values for nZo (N̂ ) and n£a (CÔ ) 
2 m Z m 

(Table 3) at 784 A are found to be close to those for and 
 ̂ o 

n2ô ,_̂ (C0 ), respectively. Furthermore, the value for nJlâ (N̂ ) de-

° + 
creases as a function of E , while that for nZa (CO ) shows an op-

c.m. m 

posite trend. These observations again indicate that the majority of 

the H^(v") ions formed by Reaction (1) with v^ = 1 at E^ ̂  =4,8, 

16 eV are mainly in the v" = 1 state and that as E increases, inelastic 
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charge transfer will produce more in other vibrational states. 

The fact that the value for n2o (CÔ ) is higher at E =16 eV than m ° c.m. 

those at E =4 and 8 eV supports the conclusion that the fraction 
C •  d#  

of Ĥ (v" = 0) increases as E increases. The calculated state-to-
2 c.m. 

state cross sections for Reaction (1) with v̂  = 1 reveal that = 

1) ions formed at E =8 and 16 eV constitute 72% and 50% of 
c.m. 

the total Ĥ Cv") intensity, respectively.̂  ̂ The Ĥ Cv" = 0) intensi­

ty increase from 19% at E = 8 eV to ̂  37% at E = 16 eV. 
•' c.m. c.m. 

Therefore, we conclude that the theoretical calculations of Lee and 

DePristo are in qualitative agreement with our experimental observa­

tions. 

Conclusions and Summary 

We have developed a new ion-molecule reaction apparatus which 

combines the high resolution photoionization mass spectrometry, crossed 

ion-neutral beam method, and charge transfer detection technique. This 

apparatus is most appropriate for state-selected total cross-section 

measurements of simple charge transfer and proton transfer reactions. 

Under specific experimental conditions, the final vibrational and 

electronic states of charge transfer product ions can be probed with 

the charge transfer detector. Using this apparatus, we have examined 

the vibrational, rotational, and kinetic energies effects on the to­

tal symmetric charge transfer cross section for the reaction of + 

. The crossed ion-neutral beam arrangement has allowed the measure­

ments of (Ê ), v̂  = 0-4, at high kinetic energy resolutions. The 
o 
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vibrational energy dependences for (Hg) in the kinetic energy 
o 

range of E = 8-200 eV observed in this experiment were found to 
c.m. 

be in good agreement with the recent calculation based on the semi-

classical energy conserving trajectory formulation. The kinetic 

energy dependences for O ^ , =  0  and 1, which were obtained 
o 

indirectly by calibrating the relative total charge transfer cross-

sections measured at 688 A (18 eV) with absolute total charge transfer 

cross sections determined previously using electron ionization, re­

veals broad peaks at Ê  ̂  = 35 and 16 eV, respectively. These broad 

features were attributed to the strongly coupled multistate nature in 

the dynamics of Reaction (1). No observable effect on at 
o 

E =2 and 4 eV when the rotational quantum number of the reactant 
c.m. 

ions were varied from J = 0 to 2. The vibrational energy effects 
z 

on Reactions (1) and (2) were directly observed. The observations 

are in accord with the qualitative predictions based on the accessi­

bility of the avoided crossing seam on the ground state potential 

energy surface and the TSH calculation. The vibrational enhancement 

for Reaction (1) was found to reach the maximum at Ê  ̂  = 2 eV and 

become less pronounced as E decreases from 2 to 0.38 eV, an obser-
c.m. 

vation in variance with the TSH calculation. The final vibrational 

state distributions of ions formed by Reaction (1) with v̂  = 0 and 

1 at Ê  ̂  =8 and 16 eV as probed by the charge transfer detection 

method were found to be consistent with the SCECT state-to-state cross 

sections. 
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A logical development of the crossed ion-neutral beam apparatus 

is to incorporate the photoion photoelectron coincidence method such 

that state-selected experiments can be extended to more complicated 

systems. In the case of the reaction (v̂ ) + higher vibrational 

state of can be selected by using the coincidence method. The 

charge transfer detection technique is a highly sensitive method and 

can in principle be used to measure product vibrational state distribu­

tions involving more than two states. 
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110. The difference between and was found to 
o o 

be greater when a higher resolution of the horizontal quadrupole 
mass spectrometer was used to reject the contribution of N̂ Ĥ -
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SECTION V. VIBRATIONAL STATE DISTRIBUTIONS OF Ĥ Cv") 

RESULTING FROM THE ELECTRON TRANSFER REACTIONS 

Ĥ (v' •;= 0,1) + H (v" = 0) ̂  H (v') + Ĥ (v") 
z o z o z z 

IN THE COLLISIONAL ENERGY RANGE OF E = 2-16 eV 
c.m. 

Abstract 

The vibrational state distributions of product Ĥ Cv") resulting 

from the symmetric charge transfer reactions = 0 or 1) + 

H_(v" = 0) HL(v') + Ĥ Tcv") in the center-of-mass collisional energy 
Z O z z 

(E ) range of 2-16 eV have been measured by the charge exchange 
c.m. 

method. When reactant ions are prepared in v̂  = 0, the majority 

+ 
(> 80%) of product ions are formed in v" = 0. The vibrational 

relaxation channel for forming Ĥ (v" = 0) is found to be much more 

efficient than the vibrational excitation process for producing 

Ĥ (v" = 1) in the Ĥ (v' = 1) + H_(v" = 0) charge transfer collisions. 
Z Z 0 Z o 

The experiment also reveals that inelastic charge transfer channels 

become more important as E is increased. The vibrational state 
 ̂ c.m. 

distributions of product Ĥ (v") determined at Ê  =8 and 16 eV 

are compared with results of the semiclassical energy conserving tra­

jectory calculations of Lee and DePristo. A better agreement between 

experimental and theoretical results is observed at ^ = 16 eV, 

a collisional energy at which charge transfer is the overwhelming chan­

nel. 
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Introduction 

Recently, Liao, Liao and Nĝ  performed an experiment using the 

charge exchange detection method to probe the vibrational state dis­

tribution of Ĥ (v") formed in the charge transfer reaction 

Ĥ (v' = 0 or 1) + H (v" = 0) H„(v') + h]̂ (v") . (1) 
z o z o z I 

The experimental observations were found to be in qualitative agree-

2 ment with the theoretical calculations of Lee and DePristo based on 

the semiclassical energy conserving trajectory (SECT) formulation. 

In the case when the reactant ions were prepared in v̂  = 0, the 

experimental and theoretical results were in quantitative agreement. 

We have remeasured the vibrational state distributions of Ĥ (v") 

resulting from reaction (1) in the center-of-mass collision energy 

(Ê  ̂  ) range of 2-16 eV using an improved apparatus. The analysis 

of the experimental data gives quantitative results for the vibration­

al state distributions of Ĥ Cv") when the reactant are in the v̂  = 

0 and 1 states. This experiment reveals that vibrational energy re­

laxation of molecular ions via the charge transfer mechanism is highly 

efficient. 

Experimental 

The experimental arrangement and procedures are similar to those 

1 3 described recently. ' The sensitivity of the charge exchange detector 

in the crossed ion-neutral beam photoionization apparatus has been im­
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proved by inserting a quadrupole mass filter between the collision 

region and the horizontal charge exchange detection gas cell. This 

modification completely suppresses the noise arising from reaction 

of the reactant ions with probing gas molecules effusing from 

the detection gas cell into the collision region. In order to il­

lustrate the essential modification of the crossed ion-neutral beam 

photoionization apparatus, the cross-sectional view of the apparatus 

is shown in Figure 1. Briefly, the apparatus consists of a 3-m near 

normal incidence vacuum ultraviolet (VUV) monochromator (McPherson 

2253 M), a discharge lamp, a VUV light detector, two supersonic 

beam production systems, three quadrupole mass filters and two reac­

tion gas cells. 

The reactant ions were prepared by photoionization of a 

supersonic jet at the photoionization region. The neutral reactant 

beam was produced by supersonic expansion through the upper nozzle 

(3) (nozzle diameter of 120 um, stagnation pressure of 250 Torr) 

and collimated into the scattering chamber by a conical skimmer (5). 

The reactant Ĥ Cv') and H„(v" = 0) beams intersected at 90° at the 
z o z o 

collision center. The laboratory collision energy is defined 

by the difference in potential between the photoionization and colli­

sion regions. The intensity of reactant (v̂ ) was measured by the 

vertical quadrupole mass spectrometer (10). Slow product ioas 

produced by reaction (1) were collected and measured by the front 

quadrupole mass filter (11). During the measurement of the product 
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Figure 1. Cross-sectlonal view of the crossed ion-neutral beam photoionization apparatus. 

(1) lower II2 supersonic nozzle, (2) quartz nozzle tip, (3) upper H2 supersonic 
nozzle, (4) grid 1, (5) skimmer, (6) grid 2, (7) grid 3, (8) vertical gas cell, 
(9) gas inlet of the vertical gas cell, (10) vertical quadrupole mass spectrome­
ter, (11) front horizontal quadrupole mass spectrometer, (12) back horizontal 
quadrupole mass spectrometer, (13) gas Inlet of the horizontal gas cell, (14) 
horizontal gas cell 
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Ĥ (v") ion intensity, the back quadrupole mass filter (12) was oper­

ated as an ion guide and the horizontal gas cell (14) was empty. 

In this experiment, the charge exchange reactions 

( 2 )  

Ĥ Cv") + Ar H2 + Ar"*" (3) 

at Ejab ~ eV have been used as the probing reactions to deduce the 

vibrational state distribution of product (v"). The SECT theoreti­

cal calculation predicts that at E < 16 eV, an overwhelming majori-
c.m. — 

ty of the product formed by reaction (1) are in the v" = 0, 1, and 

2 states. The preliminary experimental study of Liao, Liao, and Nĝ  

supports this prediction. Assuming the Ĥ (v") ions consist only of 

in the v" = 0, 1, and 2 states, and using arguments presented pre­

viously, we arrive at the relations 

Xq + + X2 = 1 (4) 

Xn&OoCNg) + X̂ niâ CN̂ ) + X̂ niâ CN̂ ) = n̂ â CN̂ ) (5) 

X_n&a.(Ar ) + X_n£a (Ar ) + X„n£a„(Ar ) = nlo (Ar ). 
0 0 z 1 z / m 

Here, X̂ , X̂ , and X̂  are the fractions of product ions formed in 

the v" = 0, 1, and 2 states, respectively; and are the 

state-selected total cross sections for reactions (2) and (3) when 

(6) 
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ions are prepared in the 0, 1, and 2 vibrational states, respec­

tively; and â CAr"̂ ) represent the total cross sections for 

reactions (2) and (3) characteristic of the Ĥ Cv") ions formed by 

reaction (1), n is the density of (or Ar); and Z is the effective 

1 3 
length of the gas cell. As mentioned in the previous studies, ' 

the calculations of Xq, X̂ , and X̂  need not involve the determina­

tion of" absolute total cross sections provided niiô CN̂ ), niâ CN̂ )» 

nZo (N^), nZa (Ar"*"), n£a (Ar"*") , n£a_ (Ar"*"), n£a (N^) , and nZa (Ar̂ ) 
z z u  1  z  m z  m  

are measured in the same gas cell with the same value of n. 

1 3 
The main difficulty of the previous experimental arrangement ' 

used in determining the vibrational distribution of Ĥ (v") is that 

probing gas molecules such as effuse from the charge transfer de­

tection cell to the collision region and react with the reactant 

Ĥ (v̂ ) ions giving rise to N̂ . These are collected and appear 

as noise in the charge transfer detection experiment. Although the 

noise thus formed can be subtracted from the total signal, it 

affects the signal-to-noise ratio of the measurement. In this ex­

periment, the (or Ar"*") noise can be completely suppressed by using 

the front quadrupole mass spectrometer to filter the (or Ar') 

noise. The front mass spectrometer can also prevent minor formed 

in the collision from entering the charge transfer cell. The 

interactions of with probing gas molecules may affect the experi­

ment in an unknown way. During the measurement of n2ô (N̂ ) (or 

(Ar"*") ) the front quadrupole mass filter was tuned to the mass of 
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Ĥ (m/e = 2) while the back quadrupole mass spectrometer was tuned 

to the mass of (or Ar"**). 

Results and Discussion 

In order to determine values for n̂ ô CN̂ ), niâ (N̂ ), n̂ Ô CN̂ ), 

(Ar"*"), n2ô  (Ar"*") , and nS-Ĝ  (Ar"*") , the photoionization efficiency 

(PIE) curves for product and Ar"*" ions formed by the reactions 

h1"(v') + N_ and h!̂ (v*) + Ar at E, , = 20 eV were obtained with the 
Z O Z Z O Xâ.0 

ion beam-horizontal gas cell arrangement described previously.̂  The 

Ĥ (v̂ ) ions were formed by photoionization in the photoionization 

region and deflected through the horizontal cell by adjusting the 

voltages of grids 1, 2, and 3 at the collision region. Figures 2(a)-

(c) show the PIE curves for H2 and product and Ar ions in the re­

gion of 750-810 Â measured with a wavelength resolution of 0.28 Â 

(FWHM). Table 1 lists the values for nJlâ ,(N̂ ) n&ô ,(Ar̂ ), v̂  = 0-4,̂  

determined by the analysis (see- Ref. 1) of the PIE curves for and 

product and Ar"̂  ions. Since the gas cell used in this study does 

not allow the collection of all product ions, these values cannot be 

viewed as absolute total cross sections. The large differences between 

n2Gg, nZô  and nlâ  and the different trends observed in the vibra­

tional dependence of nia , (N̂ ) and nJlâ ,(Ar'̂ ) should provide sensitive 
"̂ o ""o + 

detection for the vibrational state distribution of (v") formed by 

reaction (1). 

The values for nla (N̂ ) and n£a (Ar"*") determined using the hori-
m z m 
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Figure 2. PIE curves In the region of 750-810 Â for a) b) product N̂ , 
+ + + and c) product Ar . The product N„ and Ar ions were formed 
+ + 

by the reactions 11̂  + and 11̂  + Ar, respectively, at = 

20 eV using the ion beam-horizontal gas cell arrangement. Wave­
length resolution = 0.28 A (FWllM) 



www.manaraa.com

136 

Table 1. Values for n£q̂ , (N̂ )̂  and nJlq̂ , (Ar"̂ ) ,̂  
0 o 

Slab = 

v' = 0-4, determined 
0 

v' 
0 

n&Oy,(N̂ )b,c 
0 

n2qy,(Ar+)T)' = 

0 

0 0.01305 0.00780 

1 0.03344 0.03010 

2 0.02001 0.03566 

3 0.01482 0.02580 

4 0.01471 0.01338 

3 0 ^ , a n d  q ^ , ( A r  )  r e p r e s e n t  t h e  t o t a l  c r o s s  s e c t i o n s  f o r  t h e  

+ *0 + + + 
reactions, H2(v̂ ) +  ̂ + N2 and H2(v̂ ) +AT + Ar , respec­

tively. n is the density for or Ar and Z is the effective length 
of the gas cell. 

T̂he standard deviations due to counting statistics are _< 3%. 

n̂Zâ CN̂ ), nJiâ CN̂ ), n ilâ  (Ar"*"), and nJlâ CAr"*") are not used in the 

calculations. 

zontal gas cell are listed in Table 2. The photon wavelength of 792 

Â was used to produce reactant at v̂  = 0. At 784 A, which coincides 

+ 
with the position of the strongest autoionization peak in the spec­

trum, ions are formed predominantly in the v̂  = 1 state. The values 

O 
for v' = 1 shown in Table 2 are obtained from values measured at 784 A 

o 

and corrected for the minor contribution of Ĥ (v' = 0). 
z o 

Using the values listed in Tables 1 and 2, the fractions of prod­

uct formed in v" = 0, 1, and 2 have been calculated by solving ap­

propriate 3x3 linear equations. These fractions are listed in Table 3. 
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Table 2. Values for n£a (N̂ )̂  and n£a (Ar"*")̂  determined at E, , 
, ml n lab 

20 ev" 

v'̂  
0 

nZa (NI")® 
m z 

nia (Ar"*")̂  
m 

0 2 0.01282 0.00860 

4 0.01430 0.01020 

6 0.01509 0.01066 

8 0.01529 0.01100 

12 0.01611 0.01175 

16 0.01659 0.01187 

1 2 0.02916 0.02542 

4 0.02711 0.02510 

6 0.02505 0.02403 

8 0.02524 0.02297 

12 0.02434 0.02154 

16 0.02250 0.02032 

â H* 
a (N-) and u (Ar ) are the total cross sections for the reactions 
m Z m 

Ĥ (v") + H2 and Ĥ Cv") + Ar ->• + Ar"*", respectively, n is 

the density of or CO and £ is the effective length of the gas cell. 

is defined to be the difference in potential between the 

collision region and the horizontal gas cell. 

C 4" 
Vibrational state of the reactant ions. 

Ĉenter-of-mass collisional energies of the reaction Ĥ (v') + 
 ̂Ĥ Cv') + H+(v"). ° 

T̂he standard deviations due to counting statistics are ̂  3%. 
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Table 3. Vibrational state distributions of product (v") formed by 
+ 

the charge transfer reaction H„(v' = 0 or 1) + H„(v" = 0) ̂  
 ̂ o 2 o 

H„(v') + H»(v") in the center-of-mass (E ) collisional 
6 ^ C • d • 

energy range of 2-16 eV 

Bc.m. v' 
o %0 

b b 
%2 

b 

2 0 1.00 0.00 0.00 
1 0.21 0.79 0.00 

4 0 0.91 0.04 0.05 
1 0.25 0.66 0.09 

6 0 0.88 0.09 0.03 
1 0.31 0.54 0.15 

8 0 0.86 (0.92) 0.10 (0.07) 0.04 (0.01) 
1 0.34 (0.17) 0.57 (0.76) 0.09 (0.07) 

12 0 0.83 0.14 0.03 
1 0.40 0.53 0.07 

16 0 0.82 (0.87) 0.17 (0.12) 0.01 (0.01) 
1 0.46 (0.39) 0.43 (0.50) 0.11 (0.11) 

X̂q, X̂ , and X̂  are the fractions of product formed in the v" = 

0, 1, and 2 states. The uncertainties of these values are estimated 
to be 0.05. 

T̂he values in the parentheses are theoretical values (Ref. 2). 

The uncertainties of the calculated values for X̂ , X̂ , and X̂  are es­

timated to be 0.05. The SECT theoretical values obtained by Lee and 

DePristo at E =8 and 16 eV are also included in Table 3. 
c.m. 

Ifhen the reactant ions are in v̂  = 0, nearly all the charge 

transfer product ions formed at E = 2 eV are in the v" = 0 
2 c.m. 

state, indicating that resonance charge transfer is the dominant proc­
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ess. As E changes from 2 to 16 eV, the value for X, increases O • tQ • J. 

steadily from 0.0 to 0.17. The fractions of product observed 

in the v" = 2 state in this energy range are small. The values for 

X- and Xt obtained from E = 16 eV are consistent with those re-
0 1 c.m. 

ported previously.̂  The SECT theoretical values for X̂ , X̂  and X̂  

at E =8 and 15 eV with v' = 0 are in fair agreement with the 
c.m. o 

experimental findings. 

For the reactant ions prepared in v̂  = 1, the experimental re­

sults show that even at E = 2 eV the inelastic relaxation channel 
c.m. 

forming v" = 0 is significant. The degree of relaxation also in­

creases as E increases. At a given E , the value for X„ ob-c.m. ° c.m. 2 

served with v' = 1 is comparable to that for X, with v* =0. The 
o 1 o 

most interesting observation is that the extent of the relaxation 

channel is substantially greater than that of the excitation channel. 

Although the SECT calculations predict such a trend, the theory seems 

to underestimate the degree of inelastic relaxation. A better agree­

ment between experimental and theoretical results is found at E = c.m. 

16 eV. At E = 8 eV and v' =1, the experimental value for X_ is 
c.m. 0 0 

twice that of the theoretical value. However, the SECT theoretical 

study of Lee and DePristo has not taken into account the formation of 

+ H which becomes more important at lower collision energies. This 

may explain the discrepancy observed between the experimental and theo­

retical results at v' =1. 
o 
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SECTION VI. A STATE-TO-STATE STUDY OF THE 

SYMMETRIC CHARGE TRANSFER REACTION Ar''"(̂ P, . ,„) + Ar(̂ S ) 
J/Z,l/Z 0 

Abstract 

The relative state-to-state total charge transfer cross sections 

3̂/2-̂ 3/2' °3/2+l/2' °l/2+l/2' °l/2+3/2' reactions 

Ar'̂ (̂ P3/2) + ArĈ Sg) ̂  Ar(̂ Ŝ ) + Ar+f̂ P̂ ŷ ), 

 ̂Ar(\) + Ar'̂ (\/2). 

Ar*̂ P̂̂ y2) + Ar(̂ Ŝ ) -+ Ar(̂ Ŝ ) + Ar'̂ 'Ĉ P̂ ŷ ), and 

+ ArĈ Ŝ ) + Ar+cZpg/̂ ). 

respectively, at the laboratory collision energy range of 1-4000 eV, 

have been determined using the newly constructed crossed ion-neutral 

beam photoionization apparatus. This apparatus is equipped with a high 

resolution photoionization ion source for reactant state selections 

and a charge transfer detector for product state identifications. The 

measured profile of the kinetic energy dependence for the probability 

for ̂ '̂ 2/2 ^̂ 1/2 fîB̂ -structure transitions in Ar'̂ Ĉ P̂ ^̂ ) + ArĈ Ŝ ) 

charge transfer collisions 2/1-^11'^'^312-^3[2 3̂/2-<-l/2̂  ̂ gen­

eral agreement with the theoretical prediction of Johnson. However, 

the theoretical probabilities are approximately 40% greater than those 
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observed in this experiment. The total charge transfer cross sec-

+ 2 1 
tion for Ar ( ̂3/2̂  + Ŝ ) [<̂ 3/2-»-3/2 °3/2+l/2̂  were found to be 

slightly higher than that for + ArĈ Ŝ ) ['̂ 2̂ /2-)-l/2 °l/2+3/2̂ ' 

Furthermore, the experimental values for '̂ l/2->-3/2 ) /  

(03/2̂ 3/2 + °̂ /2+l/2̂  indicate that the difference in the total charge 

transfer cross sections for Ar̂ \̂ P̂ y2) + ArĈ Ŝ ) and Ar"̂ (̂ P3y2) + 

Ar(̂ Sg) diminishes at both low and high collision energies, in accord­

ance with the theoretical expectations. Taking into account the ex­

perimental uncertainties, the experimental results are also consistent 

with detailed balance which requires the value for CT2/2-»-3/2 twice 

that for ô /2»i/2 collisional energies substantially higher than the 

spin-orbit splitting of Ar"*". 

Introduction 

The symmetric charge transfer reactions between Ar"*" and Ar have 

1-17 
been the subject of many experimental studies. Most of the pre­

vious studies involved measurements of the total charge transfer cross 

section as a function of collision energy using electron-impact ion 

4. 
sources. Thus, the reactant Ar ions were usually formed in a mixture 

2 2 
of the P3/2 1̂/2 states. Furthermore, due to the nature of the 

electron ionization, metastable Ar"*" ions may also have been produced 

in the electron-impact ion sources. In spite of these difficulties, 

the kinetic energy dependence of the total symmetric charge transfer 

cross section for the Ar"*" + Ar system is considered to be one of the 

18 
most reliably established. Using photoionization to prepare the 
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reactant Ar"*" ions, the fine-structure effects on the synnnetric charge 

transfer in Ar have recently been examined.The photoion-photo-

electron coincidence-study of Campbell et al.̂  ̂shows that the ratio 

+ 2 1 
of the total charge transfer cross sections for Ar { + A.r( Ŝ ) 

+ 2 1 
and Ar ( + Ar( Ŝ ) is just measurably smaller than unity over the 

laboratory collision energy range of 5-1000 eV, an observation 

19 
consistent with the two-state model of Rapp and Francis. The pre­

vious experimental studies of the Ar"*" + Ar system are in general agree-

19-21 
ment with theoretical predictions. 

21 
Although the theoretical calculation of Johnson, which took in-

4. 
to account the Z and II energy states of the Ar^ quasi-molecular ion, 

has provided state-to-state cross sections, 03/2+3/2' *^3/2^1/2' ^l/2-»-l/2' 

and 02/2+3/2' the four charge transfer processes 

Ar'̂ (4̂ ŷ ) + Ar(̂ Ŝ ) + Ar(̂ Ŝ ) + (1) 

+ Ar(̂ Sg) + Ar+Ŷ Pi/2) (2) 

Ar+Ĉ P̂ ŷ ) + Ar(̂ Ŝ ) + Ar(̂ Ŝ ) + 

+ Ar(̂ Ŝ ) + Ar'̂ Ĉ ŷg) ' (4) 

respectively, no experimental state-to-state cross-sectional data 

have yet been available to compare with the theoretical predictions. 

12 McAfee et al. have indirectly derived the probabilities for fine-
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structure transitions associated with charge transfer collisions at 

= 123 eV by means of transformation analysis of the energy and 

angular distributions of the charge transfer product Ar"*" ions. The 

fine-structure transitions associated with the direct inelastic chan­

nels at the range of 60-1500 eV have been observed recently by 

13 
Itoh et al. Both of these experiments used electron ionization to 

prepare the reactant Ar"*" ions. The statistical ratio of 2:1 for the 

+  2  + 2  
intensities of Ar ( aiid Ar ( formed by electron ioniza­

tion was assumed in their data analyses. 

Photionization is the cleanest method for the preparation of 

reactant ions with well-characterized distributions of internal states. 

Reactant ions in their ground electronic, vibrational, and/or rota­

tional states can be produced with 100% purity by the simple photoioni-

zation method. The major drawback of a photoionization ion source is 

its inefficiency. The charge transfer product ion intensity observed 

in a state-selected experiment using a photoionization ion source such 

as that used in this study is usually less than 1000 ct/s. Therefore, 

it is difficult to apply experimental methods such as translational 

energy measurements and laser-induced fluorescence to probe the internal 

energy distribution of charge transfer product ions formed in a state-

selected experiment using a vacuum ultraviolet photoionization source. 

Previous state-selected charge transfer studieŝ  ̂ have revealed 

dramatic variations in total cross-sections with ion internal and trans­

lational energies. We have developed an ion-molecule reaction apparatus 
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which combines the crossed ion-neutral beam method, high resolution 

photionization mass spectrometry, and charge transfer detection. As 

a result of the favorable kinematics in crossed ion-neutral beam studies 

of charge transfer processes, it is possible to collect nearly all prod­

uct ions and to probe the final state distribution of these ions by 

measuring their reactivity for charge exchange with other molecules in 

a reaction gas cell. This report presents the results on the first 

state-to-state study of Reactions (l)-(4) using this new apparatus. 

Experimental 

The experimental arrangement and procedures have been reported re-

35 36 cently. ' The crossed ion-neutral beam apparatus has been developed 

37 
from a high resolution photoionization mass spectrometer. In order 

to facilitate the description below, the cross-sectional view of the 

crossed ion-neutral beam apparatus is shown in Figure 1. The apparatus 

essentially consists of a 3-m near normal incidence vacuum (VUV) mono-

chromator (McPherson 2253 M), a discharge lamp, a VUV light detector, 

two supersonic beam production systems, two quadrupole mass spectrome­

ters, and two reaction gas cells. 

The basic pumping arrangement is similar to that described in Ref. 

37. The lower nozzle (1), which is positioned at a distance of 0.65 

cm from the photoionization region, has a quartz tip (2) with a nozzle 

diameter (D̂ ) of 60 ym. Using an argon stagnation pressure (P̂ ) of 

80 Torr, the pressure in the photoionization chamber was 5x10 

Torr. The Ar"̂  reactant ions formed by photoionization at the photo-
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Figure 1. Cross-sectional view of the crossed ion-neutral beam photoionization apparatus. 

(1) lower nozzle, (2) quartz nozzle tip, (3) Ar inlet, (4) electrostatic deflector, 

(5) Ar inlet, (6) upper nozzle, (7) skimmer, (0) grid 1, (9) grid 2, (10) grid 3, 

(llv) vertical gas cell, (llh) horizontal gas cell, (12) platinum grid, (13) ver­

tical quadrupole mass spectrometer, (14) horizontal quadrupole mass spectrometer, 

(15) gas inlet, (16) to Baratron manometer, (17) horizontal gas cell chamber, 

(18) aperture. 
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ionization region were extracted perpendicular to the Ar beam and 

focused onto another neutral Ar(̂ Ŝ ) supersonic beam at an intersect-

+ 2 
ing angle of 90°. In a state-to-state study of Ar ( ̂3/2 1/2̂  

38 
HgCv =0), there was strong evidence that collisions between 

+ 2 
Ar ( Pgyg) initially formed by photoionization and background Ar in 

the photoionization chamber gave rise to an Ar"*" beam consisting of 

+  2  + 2  
a mixture of Ar ( "̂ 2/2) ( ̂2/2̂ ' found that the purity of 

+ 2 
the reactant Ar ( beam was preserved by maintaining a background 

pressure of < 8x10 ̂  Torr in the photoionization chamber. This was 

achieved by keeping below 100 Tor. The intensity of Ar̂  produced 

39 
under these experimental conditions was negligible in comparison to 

that of Ar"̂ . The neutral reactant Ar(̂ Ŝ ) beam was produced by a super­

sonic expansion through the upper stainless steel nozzle (6) with = 

120 iJm at = 300 Torr and was then collimated into the scattering 

chamber by a 0.76 mm diameter conical skimmer (7). The divergence 

angle of the neutral reactant Ar beam was estimated to be 10°. Ac­

cordingly, the width of the neutral beam at the collision center was 

0̂.5 cm. The intensity of the Ar"*" reactant ion beam was monitored 

with the vertical quadrupole mass spectrometer (13). The intensity 

of the slow product Ar"*" ions formed in the collisions was measured 

by the horizontal quadrupole mass spectrometer (14) positioned in the 

direction of the neutral Ar(̂ S ) reactant beam. The pressures main-
o 

-4 
tained in the beam source chamber and the scattering chamber were 10 

and 'V 2x10 ̂  Torr, respectively. The vertical and horizontal quadrupole 
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mass spectrometer chambers were evacuated by a liquid-nitrogen (LN̂ ) 

trapped 4-in diffusion pump. With the upper reactant Ar beam off, the 

base pressure in the mass spectrometer chamber was 2x10 ̂  Torr. 

During the crossed ion-neutral beam experiment, the detector chambers 

were maintained at a pressure of 'v 8x10 ̂  Torr. 

In order to avoid the distortion of the electric field at the 

photoionization region by field penetration due to adjacent focusing 

ion lenses, the ion exit aperture of the repeller at the photoioniza-

tion region was covered by a 90%-transmission gold grid. The colli­

sion region was also shielded by a small square ion lens and three 90%-

transmission gold grids (8), (9), (10) for a similar reason-

Previous studies ' show that because of inelastic charge trans­

fer channels, the- charge transfer product Ar"*" ions can be scattered 

more than ± 10° away from the neutral reactant Ar beam direction. For 

accurate measurements of the total charge transfer cross sections, it 

is important to have high collecting efficiency for inelastic charge 

transfer product Ar"*" ions scattered at wide angles. Based on the geo­

metric angle sustained by grid 1 at the collision center, the ion lens 

system of the horizontal mass spectrometer is capable of accepting 

product Ar"*" ions scattered ± 25° away from the neutral Ar(̂ Ŝ ) beam 

direction. The actual transmission through the horizontal mass spec­

trometer may depend on the scattering angle. A simple analysis based 

+ 2 
on the Newton diagram of the scattering, involving a 5 eV Ar ( ̂2/2̂  

ion beam and a supersonic Ar(̂ S ) beam intersecting at 90°, predicts 
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+ 2 
that charge transfer product Ar ( ions can be scattered ̂  15° 

away from the neutral Ar(̂ Ŝ ) beam direction. The scattering angles 

for inelastic charge transfer product Ar"*" ions become smaller as 

increases. At low collision energies, the scattering angles for 

inelastic charge transfer product Ar"̂  ions are expected to be large. 

However, since resonance charge transfer is the dominant charge trans­

fer channel at low Ê ^̂ ' should not be a problem here. 

The charge transfer Ar"̂  product angular distribution measured at 

= 200 eV̂  ̂reveals that nearly all charge transfer product Ar"*" 

ions are scattered within ± 4" with respect to the neutral reactant 

Ar beam direction. According to the energy analysis of the charge 

transfer product Ar"*" ions at a laboratory scattering angle of 4°,̂  ̂

a significant fraction of Ar products are produced with high kinetic 

energies in the range of 1-5 eV. Since these ions have velocity com­

ponents perpendicular to the neutral reactant Ar beam direction, it 

is desirable to apply an extraction electrostatic field between grids 

1 and 3 to maximize the collection and detection efficiencies of such 

ions. The extraction electrostatic field maintained between grids 1 

and 3 varies from 0.5 V/cm at EL _ = 1 eV to 10 V/cm at , > 
lab lab — 

100 eV. The product Ar"̂  ion intensity as monitored with the horizontal 

mass spectrometer was found to remain essentially constant for extrac­

tion fields > 10 V/cm at E, , > 100 eV. After the product Ar"*" ions 
— lab — 

emerged from grid 3, strong focusing fields were used to accelerate 

these ions towards the horizontal gas cell which is approximately 6 cm 
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from the collision region. For an entrance aperture of 0.6 cm for 

40 
the horizontal gas cell, a simple calculation shows that an extrac­

tion field of 10 V/cm is more than sufficient to collect the high 

energy product Ar"̂  ions formed at = 200 eV and scattered initial­

ly towards grid 3 into the horizontal gas cell. The collection of 

product Ar"*" ions moving towards grid 1, although less favorable, 

41 
should still be adequate. Based on the above analysis, we believe 

that the collection and detection efficiencies for in-plane and near 

in-plane scattered charge transfer product Ar"*" ions achieved in this 

experiment is very good. Nevertheless, discriminative effects against 

product ions scattered out-of-plane with high kinetic energies are 

to be expected. This is a problem for most of the previous state-

selected total cross-sectional studies which used a similar arrange­

ment as that used in this experiment. In this case, one should realize 

that high energy product Ar"*" ions. formed at high and scattered 

at wide laboratory angles usually represent a small fraction of the 

total charge transfer product ions. 

The laboratory collision energy is defined by the difference in 

potential between the photoionization and collision regions. The 

kinetic energy resolution depends on the repeller field at the photo­

ionization region and the extraction field at the collision region. 

Since the voltage arrangements used in this experiment are similar to 

those in the study,the kinetic energy resolution achieved 

here and in the latter experiment should be comparable. In the Ê ^̂  
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range of interest in this study, the values for AE/Ê ^̂  are estimated 

to be better than 0.03. Ae represents the kinetic energy spread for a 

given value of 

The gold-coated tube-like aperture (18) extends the exit hole 

for the reactant Ar"*" ions in the square ion lens to 0.3 cm from the 

36 
collision center. It was shown in the previous study that as a re­

sult of a better defined collision volume due to this aperture, the 

intensity of background ions arising from elastically scattered reac­

tant ions at Ê ^̂  ̂  2 eV, as observed by the horizontal mass spectrome­

ter was minimized. The previous study also indicated that at Ê ^̂  2 

4 eV, the intensity of background ions due to elastically scattered 

reactant ions was negligible compared to that of the charge transfer 

product ions. The extent of surface charging effects on the amount of 

background ions observed at low Ê ^̂  is unknown. 

The intensity of the charge transfer product Ar"*" ions is directly 

proportional to that of the reactant Ar"*" beam at the collision region. 

The electrostatic deflector (4) is helpful in optimizing the transpor­

tation of reactant Ar"̂  ions from the photoionization region to the col­

lision region at low Ê ^̂ . The obtainable intensity of the reactant 

Ar"*" ions at the collision region depends on Ê ^̂ . Using a wavelength 

resolution of 1.4 Â (FWHM), the intensities observed between the 

thresholds of Ar"*̂ (̂ P̂ y2) and Ar"̂ (̂ P̂ y2) were > 10̂  ct/s. The ratio 

of the intensity for the product Ar"*" ions to that of the unattenuated 

+ 41 
reactant Ar ion beam was < 0.02. The relative standard deviations 
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due to counting statistics for all PIE data presented here are less 

than 5%. 

The reaction gas cells (11) associated with the ion lens systems 

of the vertical and horizontal mass spectrometers are referred to here 

as the vertical and horizontal gas cells, (llv) and (llh), respective­

ly. The two reaction gas cells have an identical design. Each cell 

consists of a front and a back ion lens, a cylindrical platinum grid 

(12) and a cylindrical wall. The probing gas entered through the gas 

inlet (15) connected to the front ion lens and emerged into the gas 

cell from a circular opening on the front ion lens. The gas flow 

was regulated by a Granville-Phillips variable leak valve and the ab­

solute pressure in the gas cell was monitored with a Z4KS Baratron 

manometer (Model 370 HS-1). The reaction volume of the gas cell was 

defined by the platinum grid. Product ions formed in the gas cell 

can be trapped inside the platinum grid by applying a high positive 

potential to the cylindrical wall of the cell. The front lens and 

the platinum grid were at the same potential, whereas the potential of 

the back ion lens was slightly lower than the grid so that the product 

ions were extracted and sampled by the mass spectrometer. 

To illustrate the principle of product state identification by 

the charge transfer detection method, we shall focus on the detection 

of product ions of Reactions (1) and (2) in the discussion below. 

+ 2 
After the formation of Ar ( P̂ ) via Reactions (1) and (2) in the col-

+ 2 
lision region, the Ar ( P̂ ) ions were collected and guided through 
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+ 2 
the horizontal reaction gas cell in which Ar ( P̂ ) ions further re­

acted with according to the reaction 

Ar'̂ (̂ Pj) + -»• Ar + hJ . (5) 

Reaction (5) was selected as the probing reaction because of the sub-

23 29 
stantial difference in the state-selected total cross sections ' 

for Ar'̂ 'Ĉ P̂ ŷ ) [03/2(̂ 2) ] and Ar'̂ 'Ĉ P̂ ŷ ) *̂̂ 1/2̂ 2̂̂ "̂ target 

conditions, the measured ion intensity of [iCĤ )] formed at a given 

+ 2 
kinetic energy of the product Ar ( Pj) ions in the horizontal gas cell 

3̂/2) t̂ 3/2̂  ( ̂1/2' L̂ l/2-is related to the intensities of Ar ( P.,.) and Ar ( P,/-) [I./?] 

produced fay Reactions (1) and (2), the density of H2 [n], the effec-

tive length of the reaction gas cell (£), and <̂ 3/2̂ 2̂̂  n̂d 0̂ /2(̂ 2̂  

measured at the same kinetic energy by the equation 

S/2 ̂ *̂ 3/2(̂ 2̂  1̂/2 ̂ *̂̂ 1/2̂ 2̂̂  ~ ̂ ^̂ 2̂  • 

Using Eq. (6) and the relations 

3̂/2 1̂/2 

iCHg) = , (8) 

it can be shown that 

X3/2 a&02y2(H2) + %i/2 "̂ 1̂/2̂ 2̂̂  (9) 
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hn * \n '  ̂ • (1°) 

+ 2 
Here, is the total intensity for Ar ( P̂ ) measured when the "reac­

tion gas cell is empty; (Ĥ ) represents the total cross section for 

+ 2 
the Reaction (5) characteristic of product Ar ( P̂ ) ; and 1̂/2 

+  2  + 2  
are the fractions of Ar ( 1*3/2̂  and Ar ( P̂ yg) product ions formed in 

the charge transfer reaction of + Ar(̂ Ŝ ). Since n£a2y2̂ ^̂ '̂ 

^̂ *̂ 1/2̂ 2̂̂ ' and nŴ CĤ ) can be measured, Eqs. (9) and (10) allow the 

calculation of X2/2 1̂/2' calculation of 1̂/2 

not involve the determination of the absolute values for ̂ 3̂̂ 2 ̂ 2̂̂  and 

1̂/2̂ 2̂̂ ' provided that they are measured at the same col­

lision energy using the same or identical gas cell and a constant value 

of n. In the preparation of this paper, we found that a similar method 

42 
as described above was used recently by Tanaka et al. to analyze the 

ionic state distribution of formed in autoionization. 

The vertical reaction gas cell can be used to measure the values 

for and (̂ 2̂  * found that the reactant Ar"*" ions 

formed at the photoionization region could be deflected through the 

horizontal gas cell with moderate loss in intensity by adjusting the 

v o l t a g e s  o f  g r i d s  1 ,  2 ,  a n d  3 .  T h e r e f o r e ,  t h e  p a r a m e t e r s  n l c ^ j ,  

^̂ °l/2̂ 2̂̂ ' njlô (H2) were all measured using the horizontal gas 

cell with the neutral reactant beam off. 

The horizontal reaction gas cell and the ion lens system of the 

horizontal mass spectrometer were enclosed by the horizontal gas cell 
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chamber (17). In this experiment, the gas cell chamber was connected 

with the horizontal mass spectrometer chamber and evacuated by the same 

-4 
LN̂ -Crapped 4-in diffusion pump. For a pressure of 5x10 Torr in the 

horizontal gas cell, the pressure in the mass spectrometer chamber was 

-6 
maintained at 3x10 Torr, 

The major background of this experiment arose from ions formed 

at the collision region due to that diffused from the gas cell to 

the collision region and reacted with the reactant Ar"*" ions. By the 

proper design of the gas inlet and differential pumping, we reduced the 

intensity of the background ions to approximately 30% of the charge 

transfer product ions formed in the horizontal gas cell. The inten­

sity of the background ions was measured by turning the neutral 

reactant Ar(̂ Ŝ ) beam off, and the actual intensity for the charge 

transfer product ions was obtained by subtracting the background 

intensity from the total intensity obseirved by the horizontal 

+ 2 
mass spectrometer. The ratio of the intensities for Ar ( P̂ ) formed 

by Reactions (1) and (2) and produced in the gas cell via Reaction 

43 
(5) was generally less than 0.005. Long counting times were used 

such that the standard deviations due to counting statistics for the 

charge transfer ions were less than 5%. 

After the product Ar"*" ions formed at a given passed through 

grid 3, these ions were accelerated and focused into the horizontal 

gas cell by the ion lenses between grid 3 and the horizontal gas cell 

with the same voltage arrangement regardless of The average 
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kinetic energy for Ar traveling through the ion lenses is 50 eV. 

The total charge transfer cross section for Ar"̂  + Ar at 50 eV is 

35 A realistic estimate for the average neutral beam 

density due to the neutral reactant Ar beam in the region between the 

_5 
collision region and the horizontal gas cell is < 5x10 Torr. There­

fore, we estimate that in a distance of 'v- 6 cm less than 4% of the 

primary product Ar"*" ions will undergo secondary charge transfer. The 

errors for state-to-state data due to secondary charge transfer should 

be well within the stated error limits of ± 10%. In fine-structure-

selected total cross section measurements, the product Ar"*" ions have 

to travel a longer distance to reach the horizontal quadrupole mass 

spectrometer. However, they also traveled through the horizontal ion 

lens system at a greater average kinetic energy (y 200 eV). Stemming 

from the expectation that a large fraction of secondary charge transfer 

product ions will still be observed by the horizontal mass spectrometer, 

secondary charge transfer should have a lesser effect on state-selected 

total cross-sectional data. 

Results and Discussion 

The fine-structure effect on the total charge transfer cross section 

for Ar"*" + Ar 

Figure 2(a) compares the PIE curves for the reactant Ar"*" and the 

charge transfer product Ar"̂  ions measured at = 9.4 eV . The 

wavelength resolution used was 0.28 A (FWHM). The PIE curve for the 
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the Ar+ reactant ions ( ) obtained using a wave­
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reactant Ar"*" ions was obtained with the neutral reactant Ar(̂ S ) beam 
o 

off. Since the standard deviations for the PIE data for the reactant 

Ar"*" were better than 1%, the PIE data were connected by a dashed line. 

The PIE data for the reactant and product ions were normalized to have 

the same value at photon energies below the ionization energy (IE) for 

Ar̂ \̂ P̂ y2)[778 Â]. The PIE curve for the product Ar"̂  ions above the IE 

+ 2 
for Ar ( P̂ yg) is clearly lower than the corresponding PIE curve for 

the reactant Ar"*" ions. A similar comparison for the PIE curves for the 

reactant and product Ar"̂  ions measured at Ê ^̂  = 19.2 eV is made in 

Figure 2(b). The differences in PIE curves for the product and reactant 

Ar"̂  ions at wavelengths shorter than 778 Â found in Figure 2(b) are 

greater than those in Figure 2(a). 

At wavelengths longer than 778 Â, the reactant Ar"*" ions are formed 

2 solely in the while at shorter wavelengths, a mixture of 

and Ar̂ ^̂ P̂ y2) should be formed. Using a spherical retard-

44 45 
ing potential analyzer, Samson and Cairns ' have measured 3̂/21/2 

produced by photoionization as a function of excess energy beyond the 

+ 2 
ionization threshold for Ar ( ̂*2/2̂ ' results indicate that 

I3/2/I1/2 has the same value of 1.98 throughout the photon energy 

range of 16-21 eV. The quoted uncertainties of their measurements 

are less than 6%. Similar measurements at 584 1 (Hel) by other work-

erŝ  ̂ are in agreement with the results of Samson and Caims. Since 

the observed values for ̂ 3/2̂ 1̂/2 essentially identical to the 

statistical ratio of 2, a value of 2 will be used in the data analysis . 
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The lower PIEs for the product Ar"*" ions, as compared to those for 

+  + 2  
the reactant Ar above the IE for Ar ( 1*2/2̂ ' shown in Figures 2(a) 

and 2(b), show unambiguously that the total cross sections for Reac­

tions (1) and (2) ~ '̂ 3/2->-3/2 '̂ 3/2->-l/2̂  higher than those 

for Reactions (3) and (4) (ô yg = °i/2̂ -l/2 '̂ l/2-i-3/2̂  l̂afa = 

and 19.2 eV. The fact that the ratio for the PIEs for the product 

and reactant Ar"*" ions, k, at wavelengths shorter than 778 1 for a given 

remains constant is consistent with the finding of Samson and 

Calms that 3̂/2̂ ^̂ 1/2 same value at photon energies above the 

+ 2 
IE for Ar ( can be shown that 0̂ /2 related to 

k by the equation 

 ̂ S °3/2 * 3 °l/2"°3/2 " °m'°3/2 

C1/2/C3/2 • 3"„/''3/2 - 2 • "2) 

2 1 
The sum, -j <̂ 3/2 J ̂ 1/2' is defined to be here, can be viewed 

as the total charge transfer cross section characteristic of reactant 

+  + 2  
Ar ions produced at photon energies higher than the IE for Ar ( • 

Equation (12) allows the calculation of î/2̂ '̂ ZI2  ̂given Ê ^̂  when 

the value for a /o_,_ (or k) is known. 
m i / 2  

Figure 3 shows the values for Ĝ /ô ŷ  measured in the Ê ^̂  range 

of 1-4000 eV, Since the value for 0 /o_,_ is constant at wavelengths 
m 3/2 

shorter than 778 Â, the values for 0̂ /0̂ y2 shown in Figure 3 were ob-
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tained by measuring the ratio, [i(775 Â)/I(775 Â)]/[i(782 Â)/I(782 A)]. 

Here, i(782 A) and i(775 Â) are the intensities for the charge transfer 

product Ar"*" ions observed at 782 and 775 Â, respectively; 1(782 A) and 

1(775 Â) are the corresponding intensities for the reactant Ar"*" ions 

formed at 782 and 775 Â. The values for 1(782 1) and 1(775 A) were 

measured by the vertical mass spectrometer when the neutral reactant 

Ar(̂ Ŝ ) beam was off. The wavelength resolution used in these measure­

ments was 2 Â (FWHÎI). Each datum point is the average of several 

measurements. Typical standard deviations for the v&lues, as 

shown in Figure 3, are ̂  1%. 

The values for 0̂ /2̂ 3̂/2 (:he range of 1-4000 eV calculated 

by using Eq. (12) are also plotted in Figure 3. The standard devia­

tions for Ci/2/̂ 3/2 These experimental measurements of 

°l/2̂ 3̂/2 show that ̂ 1/2̂ 3̂/2 &PPr°2ches unity smoothly at both low 

and high collision energies, from a broad minimum of 0.89 at 10-50 eV. 

The values for Oiy2̂ 3̂/2 ̂ eing less than unity agree with recent measure­

ments of Campbell et al.,̂  ̂but they did not observe the structure of 

the kinetic energy dependence for ̂ 112̂ '̂ 2)11' 

21 
The impact parameter calculation of Johnson gave a value of 

1.00±0.05 for 0: at , > 5 eV. This prediction is higher than 
1/z Hi lab — 

experimental values of 0.89-0.94 for '̂ ifl̂ '̂ 312 l̂ab 

'u 6-400 eV. Although the calculation indicates that 0̂ /2̂ 3̂/2 es­

sentially independent of the profiles of the kinetic energy 

dependences for the ratios of the total charge transfer cross sections 
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2 2 + + 
for the "̂ 112 3̂/2 obtained for the Kr + Kr and Xe + Xe 

49 + 
systems in similar calculations resemble that observed for the Ar + 

Ar system shown in Figure 3. The calculated total cross sections for 

+ + 2 2 
Kr and Xe in the snd states have been found to change 

their slope going from the low energy region where coupling 

dominates to higher energy where (A,S) coupling dominates.The 

changes in slope occur roughly over the energy region where the velocity 

goes from a value equal to the spin-orbit splitting in atomic units 

to half that value. This energy region also corresponds to the loca­

tion of the broad minimum for the ratio of the total charge transfer 

2 2 
cross sections for the 3̂/2 spates. Since the spin-orbit 

splitting for Ar"̂  is substantially smaller than those for Kr"*" and Xe"*", 

the position of the broad minimum for expected to be at 

a lower region. Based on the known spin-orbit splitting of 0.178 

eV for Ar"*", the region predicted for the location of the minimum 

for '̂ 1/2̂ 3̂12 GV, in agreement with the experimental observa­

tion. 

As the collision energy increases, the nonadiabatic transitions 

+ 2 
between a quasi-molecular state derived from Ar ( ̂ 1̂2̂  to that de-

+ 2 
rived from Ar ( ̂2_/2̂  become more important. These nonadiabatic 

transitions lead to the increase in 0̂ /2̂ 3̂/2  ̂function of colli­

sion energy at Ejab ̂  eV. At sufficiently high Ê ^̂ , the charge 

transfer cross section is expected to be independent of the initial 

49 
J state of the ion. Johnson pointed out that at high collision 
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energies the value for ^̂ P̂ nds strictly on the ionization 

2 2 
potentials for the 1*3/2 1̂/2 ̂ Cates and would be predicted cor-

19 
rectly by the theory of Rapp and Francis. The simple two-state 

model of Rapp and Francis gives a value of 0.98 for 01/2̂ 3̂/2 good 

agreement with experimental value measured at > 1500 eV. 

The conditions of the collision become more adiabatic as the col­

lision energy decreases from = 20 eV. At very low collision en­

ergies, the cross section should be determined solely by the polariza-

bility of the neutral Ar atom̂  ̂and Ê ^̂  and thus should be independent 

of the ionic state. The observation that the value for 0̂ /2̂ 3̂/2 

proaches unity at low Ê ^̂  is in accord with this theoretical expecta­

tion. 

Relative state-to-state total charge transfer cross sections for Reac­

tions (l)-64) 

+ 2 
In order to illustrate the difference in reactivity of Ar ( ̂2/2̂  

and Ar̂ (̂ P̂ y2) with PIE data for formed via Reaction (5) at 

Ê ^̂  = 45 eV in the region of 767-790 Â were plotted in Figure 4(b) 

and compared with the PIE spectrum for Ar"*" shown in Figure 4(a). The 

+ 38 
PIE curve for the product ion was obtained in a separate study 

using the crossed ion-neutral beam arrangement and a wavelength resolu­

tion of 0.28 Â (FWHM). The increase in PIE for above the Ar̂ ^̂ P̂ yg) 

threshold indicates that <̂ 2/2̂ 2̂̂  is substantially greater than 

*̂ 3/2̂ 2̂̂  at Ê 2̂  = 45 eV, From the ratio of the step heights measured 

+  + 2  
in the spectrum, together with the known distribution of Ar ( ̂2/2̂  
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Figure 4(a). PIE curve for the Ar̂  in the region of 766-790 Â (wavelength resolu­
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Figure 4(b). PIE curve for the product ion in the region of 766-790 Â obtained 

using the crossed ion-neutral beam arrangement (wavelength resolution = 
0.28 Â (FWllM)) 
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and formed at wavelengths shorter than 778 Â, the ratio of 

1̂/2̂ 2̂̂  to ̂ 2/2̂ 2̂̂  45 eV can be deduced from an equation simi­

lar to Eq. (12). The ratio R has been found to increase as de-

23,29,38 
creases. 

A similar PIE curve for the product ion can be obtained by 

using the horizontal gas cell. This involved guiding a beam of reactant 

4-Ar ions formed at the photoionization region through the horizontal 

gas cell filled with a known pressure of and measuring the intensity 

of the product ions with the horizontal mass spectrometer. We found 

that the ratio R determined at a given collision energy using the hori­

zontal gas cell depends slightly on the pressure of the cell. As 

mentioned above, since a constant value for the pressure of was used 

+ + + 
for the measurements of nltĴ (̂ 2̂  ' and n̂ ô CHg), the 

slight dependence of R should not affect the results derived in this 

experiment. The collision energy for the probing Reaction (5) was 

fixed at Ê ^̂  = 20 eV, and the pressure of in the horizontal gas 

-4 cell was maintained at 5x10 Torr. Under these conditions, a value 

of 6.10 was obtained for R. A value of 1.75 for de­

termined by measuring iCĤ )/Î [Ar'̂ (̂ P2y2)]» where Î [Ar̂ (̂ P2y2)] 

+ 2 
the intensity of a pure Ar ( P̂ yg) beam prepared by photoionization 

at 782 Â and measured by the horizontal mass spectrometer when the 

horizontal gas cell was emtpy. Combining the values for 

4> 
and R, the value for ̂ 0̂̂ /2(̂ 2) l̂ab ~ sV was found to be 10.68. 

Typical values for nilâ CĤ ) [iCĤ )/Î ] in the Ê ^̂  ̂ n̂ge of 10-800 
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eV measured at 782 X are listed in Table 1- The values for nS.C (Ĥ ) 
m / 

at = 10, 20, and 30 eV are very close to the value of 1.75. This 

indicates that at these collision energies, '̂ 2/2-̂ 1/2 negligibly small 

in comparison with '̂ 2/2-̂ 3/2'  ̂̂lab î Lcreases, a steady increase is 

seen in the value for nHo (Ĥ ). For example, the value for n2a (Ĥ ) 
m z m z 

at ICQ eV is 2.25. Values of ̂ 2/2 ~ 0*944 and ~ 0-056 at ~ 

100 eV were obtained by solving the linear equations: 

1.75 + 10.68 = 2.25 (13) 

3̂/2 \/2 ^ 

The values for 2̂/2->-3/2̂ 3̂/2̂ ~ ̂ 3/2̂  3̂/2-̂ 1/2̂ 3̂/2̂  \/2̂  calcu­

lated for other E, , are summarized in Table 2. 
lab 

Table 1 also includes the values for nZo (Ĥ ) measured at 775 A. m z 

Since 2/3 of the reactant Ar"*" ions formed at 775 Â are Ar'Ĉ P̂ ĝ) 

1/3 are Ar*\̂ P̂ y2)' the ratio of niâ CĤ ) measured at 775 and 782 Â 

[(n£â (H2;775 A)/[n£â (H2;782 Â)] is related to R, O3/2+3/2' °3/2+l/2' 

°i/2+l/2' 1̂/2̂ 3/2 relation, 

 ̂3 (̂ 3/2+3/2+ *̂ 3/2+1/2) + 3(̂ 1̂/2+1/2 ̂°l/2+3/2) 

A) 3̂/2̂ 3/2 ^̂ 3/2->l/2 

Combining the relation 
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r = l̂/2-»-l/2 l̂/2-»3/2 

3̂/2+3/2 *3/2-»l/2 
(16) 

Eq. (15) can be rewritten 

1) (3+3 )(^3/2+3/2'*' ̂ 3 "*" 3 ̂°3/2-*-l/2 3̂ " 3̂ 1̂/2̂ 3/2 

n2ô (Ĥ ;782 A) 3̂/2̂ 3/2 ^̂ 3̂/2̂ 1/2 

Dividing the numerator and denominator on the right-hand side of Eq. (17) 

by CJ3/2' have 

n2â (H2;775 Â) (3+-3-)̂ 3/2+(T+T)̂ /2 + (3-3)('"l/2̂ 3/2/''3/2) 
T-̂  • UOJ 

n£a (Hi; 782 A) *3/2 ̂  ̂1/2 
m z 

Since R, r, X_ , X. nZa (H„;782 1), and nZa (H„;775 A) are known, 
j/z i/z m z tn z 

Eq. (IS) can be used to compute the value for ̂ il2->-3/2̂ '̂ 3l2' 

the validity of detailed balance, ̂ '̂ 2/2-̂ 1/2 ~ ̂ 1/2+3/2' can 

further be simplified as 

nJla (Ĥ ;775 A) (| + ̂ ) 
-^-4—- = X + A • (19) 
nic (H2;782 Â) *3/2 1/2 

m  ̂

In order to examine the consistency between the experimental data and 

the condition of detailed balance, one can either compute both 

03/2̂ 1/2/̂ 3/2 and 01/2+3/2/̂ 3/2 compare the values for n£â (H2;775 Â)/ 
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;782 A) and (2/3 + Rr/3)/(X2̂ 2 1̂/2̂ ' have adopted the 

latter approach. Taking into account the experimental uncertainties, 

the corresponding values for n£â CĤ ;775 X)/nĴ â CĤ lZSZ Â) and 

(2/3 + Rr/3)/(̂ 2̂ 2 1̂/2̂  the range of 10-800 eV, shown in 

Table 1, are found to be in good agreement. Therefore, we conclude 

that the experimental results are consistent with detailed balance. 

Table 2 lists the values found for 2̂/2'''̂ 3/2' 3̂12' 

'"3/2̂ 3/2/'"3/2' l̂/2̂ 1/2/''3/2 ̂  l̂ab 

values for '̂ 1/2-̂ -1/2̂ *̂ 3/2 deduced using the known values for r, 

Xgyg X̂ y2 Che condition of detailed balance, '̂ 2./2-»-3/2 ~ 

2°3/2̂ 1/2' Since '̂ i/2->.i/2̂ 3̂/2 ̂  ̂ "̂ 1̂/2' value for 0̂ /2+1/2/̂ 3/2 

decreases from 1.00 at , = 1 eV to 0.47 at E, , = 3000 eV where 
lab lab 

X̂ /2 reaches the maximum value of 0.26. Values for '̂ 3/2̂ 1/2''*̂ 3/2 

tained by scaling the theoretical plots shown in Figures 4 and 5 of 

Ref. 21 are also included in the table. The experimental values for 

°3/2+l/2/̂ 3/2 approximately 40% lower than those predicted by the 

calculation with the inclusion of rotational couplings (RC), and slight­

ly higher than the theoretical results obtained by neglecting rota­

tional couplings (NR). Nevertheless, the theoretical prediction of 

the profile for the probability of fine-structure transitions as a 

function of Ê ^̂  is in good accord with the experimental results (Figure 

5). Both the experimental and RC theoretical results show that 

°3/2»l/2̂ 3̂/2 ẑ ĉhes a maximum at Ê ^̂  2000-3000 eV. 

21 Johnson points out that the greatest uncertainty in the calcula-
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Table 1. Typical values for n&O (Ĥ ) ̂determined at E. , = 20 eV̂  
m z lab 

Blab(*V)= nJiô (H2;782 nilam(H2;775 Â)® 
nfi,am(H2;775 Â)̂  (3/2 + Rr/3) f 

Blab(*V)= nJiô (H2;782 nilam(H2;775 Â)® 
nJlam(H2;782 Â) (*3/2 1̂/2̂  

10 1.80 4.58 2.54 2.50 

20 1.76 4.57 2.60 2.48 

30 1.74 4.62 2.66 2.50 

45 1.82 4.65 2.55 2.40 

70 1.90 4.38 2.31 2.30 

100 2.25 4.38 1.95 1.90 

123 2.40 4.27 1.78 1.87 

160 2.70 4.10 1.52 1.60 

200 3.10 4.13 1.33 1.44 

300 3.29 4.10 1.25 1.36 

400 3.45 4.15 1.20 1.31 

500 3.50 4.25 1.21 1.29 

600 3.58 4.10 1.15 1.26 

800 3.58 4.22 1.18 1.25 
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Is the total cross section for the reaction, Ar̂ (̂ Pj) + Hg ̂  Ar + . n Is the 

density and Z is the effective length of the gas cell. 

T̂he value of 20 eV for of the probing reaction Is the difference In potential between 

the collision region and the horizontal gas cell. 

L̂aboratory collision energies of the reactions Ar̂ (̂ Pgy2 + Ar(̂ Ŝ ) Ar(̂ Ŝ ) + 

T̂he values for nK.Ô (Hg) measured at 782 A. The standard deviations due to counting sta­

tistics are ̂  5%. 

G 
The values for nJÎ-Ô dl̂ ) measured at 775 A. The standard deviations due to counting sta-

tlstlcs are ̂  5%. , 

Ŝee text and Eq. (19). R Is equal to 6.10 which Is the value for y2̂ 2̂̂ ^̂ 3/2̂ ^̂ 3̂  ot 

Ê ŷ = 20 eV measured with the horizontal gas cell, r = ̂ ĵ /2̂ '̂ 3/2' values for 

3̂/2̂ 3̂/2̂  and 2̂/2-i-i/2̂ 3̂/2̂ 1̂/2̂  are listed In Table 2. 
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Relative state-to-state total cross sections for the charge transfer reaction 
+ 2 1 

Ar ( Pgyg -^12} + Ar( S^) in the laboratory collision energy range of 1-4000 eV 

Experimental̂  3/2-»-l/2 3/2̂  

«  ̂ c d /„ (theoretical) 
1/2' 3/2 °3/2->-l/2' 3/2 3/2+3/2'"3/2 "l/2->l/2' 3/2 RC NR 

1.00 0.00 1.00 1.00 0.00 0.00 

0.99 0.00 1.00 0.99 0.00 0.00 

0.96 0.00 1.00 0.96 0.00 0.00 

0.93 0.00 1.00 0.93 0.00 0.00 

0.93 0.00 1.00 0.93 0.00 0.00 

0.90 0.00 1.00 0.90 0.00 0.00 

0.90 0.00 1.00 0.90 0.00 0.00 

0.89 0.00 1.00 0.89 0.00 0.00 

0.90 0.00 1.00 0.90 0.01 0.00 

0.90 0.01 0.99 0.88 0.03 0.01 

0.90 0.01 0.99 0.88 0.03 0.01 

0.92 0.02 0.98 0.88 0.06 0.02 

0.89 0.06 0.94 0.77 0.11 0.04 

0.92 0.07® 0.93 0.78 0.14̂  0.05 

0.90 0.11 0.89 0.68 0.18 0.07 

0.92 0.15 0.85 0.62 0.23 0.10 

0.92 0.17 0.83 0.58 0.28 0.12 
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400 0.94 0.19 0.01 0.56 0.31 0.15 

500 0.95 0.20 0.80 0.55 0.32 0.16 

600 0.96 0.21 0.79 0.54 0.33 0.18 

800 0.95 0.21 0.79 0.53 0.34 0.19 

1000 0.96 0.23 0.77 0.50 0.35 0.20 

1500 0.98 0.25 0.75 0.48 0.36 0.22 

2000 0.97 0.25 0.75 0.47 0.36 0.24 

2500 0.99 0.26 0.74 0.47 0.37 0.24 

3000 0.98 0.26 0.74 0.46 0.36 0.24 

4000 1.00 0.24 0.76 0.52 0.36 0.23 

T̂hls work. The experimental uncertainties are estimated to be < 10%. 

R̂eference 21. RC, with rotational coupling; NR without rotational coupling. 

^̂ 3/2->l/2̂ 3̂/2 ~ %i/2' values for ®ĵ /2-+3/2̂ °3/2 twice those for 03/2+1/2 according to 

detailed balance. 

°3/2->3/2̂ °3/2 " *3/2" 

"̂ An estimate value of 0.35 was reported in Ref. 12. 

value of 0.11 was quoted in Ref. 12. 
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Figure 5. Values for 3̂/2̂ 1/2̂ 3̂/2 Plotted as a function of in the range 

of 1-4000 eV. Experimental values: (+++). Theoretical values: 
('••) with rotational coupling; (ooo) without rotational coupling 
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tion of the cross sections is due to the potentials. An overall un­

certainty of 20% in the potential for the important internuclear dis­

tances can give rise to a shift in the calculated excitation cross 

sections in the loĝ gÊ ^̂  scale by ± 0.2. In addition to the possi­

bility of being shfited, the magnitudes of the calculated transition 

cross sections in the vicinity of the maximum were estimated to have 

an uncertainty of 'i; ± 20%. Since the uncertainties of the experimental 

results are estimated to be within ± 10%, we conclude that the RC 

theoretical values for '̂ 3/2-)-l/2̂ 3̂/2 high. Recent measure-

13 ments of the fine-structure transitions for the direct channel in 

+ 2 1 
the Ar ( P̂ ) + Ar( Ŝ ) collisions find that the RC theoretical values 

are higher than the experimental results by a factor of two. Since 

accurate ab initio potential energy curves for Ar̂  are now avail­

able, a calculation using the more accurate potentials should improve 

the agreement with the experimental results. 

As mentioned previously, the horizontal ion lens system is like­

ly to discriminate against charge transfer product Ar"*" ions scattered 

out-of-plane with high kinetic energies. If these energetic product 

Ar"̂  ions are mainly produced by the inelastic charge transfer channel, 

the experimental results for '̂ /̂2-)-l/2̂ 3̂/2 represent a lower bound. 

Quantitative assessments of these effects on the value of ̂ g/2-)'l/2̂ 3̂/2 

can be made in a future experiment where angular and final product 

state distributions are measured. 

The change in momentum of the captured electron, polarization ef-
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facts and coupling to higher states are neglected in the calculation 

of Johnson. In the deduction of experimental results, we have also as-

+  2  + 2  
sumed that the only states involved are Ar ( ̂*2/2̂ ' ( ̂1/2̂ ' 

Ar(̂ Ŝ ). Although the excitations to other electronic states are 

expected to be small in comparison to the resonance and near reso­

nance channels [Reactions (l)-(4)], the cross sections for the exci­

tations to higher electronic states might be more significant at high 

collision energies. 

Conclusion 

Combining the crossed ion-neutral beam method, high resolution 

photoionization mass spectrometry, and charge transfer detection, we 

have performed a state-to-state study of the symmetric charge transfer 

reactions Ar̂ \̂ P_._  ̂,_) + Ar(̂ S ) in the E. , range of 1-4000 eV. The 
3/2,1/2 o 13.D 

fine-structure effects on the charge transfer cross sections were 

found to be negligible at very low and very high collision energies, 

in accord with the theoretical expectations. The profile for the proba­

bility of fine-structure transitions as a function of is in agree­

ment with the RC theoretical prediction of Johnson. However, the RC 

theoretical values for 40% higher than the experi­

mental values. Taking into account the experimental uncertainties, the 

experimental results are consistent with detailed balance. 

This experiment has demonstrated that the charge transfer detec­

tion method is a highly sensitive method for the measurements of the 
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final state distributions of charge transfer product ions. The charge 

transfer detection method can be extended to meaure product electronic 

state and/or vibrational state distributions involving more than two 

states provided relative state-to-state cross sections for the selected 

probing reactions are known. 
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GENERAL SUMMARY 

Photoionization efficiency studies of high temperature vapors (Sg,, 

Egg, HgKr, HgXe) have been performed using the supersonic oven beam meth­

od. These studies have yielded precise values of ionization energies 

(IE). The measured appearance energy (AE) for the dissociative ioniza­

tion process, combined with the IE's of and S, allow the calculations 

of the dissociation energies (D̂ ) of and Ŝ . Two Rydberg series con­

verging to the b̂ Zg state of have been observed. Window resonances 

resolved in the region of 650-850 Â have been assigned as members of 

Rydberg series converging to the and (or ̂ Ê ) states of Ŝ , 

respectively. 

Using the measured lE's of HgM (M = Hg, Kr, Xe), the known D̂ 's 

of HgM and the IE of Hg, D̂ 's of HgM"*" have been deduced. By analyzing 

the shifts in energy between corresponding autoionization peaks observed 

in the and ngM"*" spectra, and by assuming the charge induced-dipole 

interaction to be the dominant interaction at the equilibrium bond dis­

tance for HgM, the equilibrium bond distances have been deduced. These 

values are in excellent agreement with values determined by spectro­

scopic studies. 

A new ion-neutral reaction apparatus, which combines high resolu­

tion photoionization mass spectrometry, crossed ion-neutral beam method 

and charge transfer detection, has been used to examine the energy 

effects on the total charge transfer cross sections for the reaction 
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The vibrational energy dependences for total charge transfer 

cross sections in the kinetic energy range of  ̂= 8-200 eV have 

been found to be in good agreement with calculations based on the semi-

classical trajectory formulation. The vibrational energy effects on 

charge and proton transfers at low collision energies have been direct­

ly observed. The observations are in accord with qualitative predic­

tions based on the accessibility of the avoided crossing seam on the 

ground state potential energy surface and trajectory surface hopping 

calculation. The kinetic energy dependences for total charge transfer 

cross sections (a ,(Ĥ ), v' = 0 and 1) show broad peaks at E % 35 
V 6 O 0 • XEl • 
o 

and 16 eV, respectively. These broad features are attributed to the 

strongly coupled multistate nature in the dynamics of charge transfer 

reaction. The vibrational state distributions of product Ĥ (v") in 

collision energy range  ̂= 2-16 eV have been probed by the charge 

exchange method. When reactant ions are prepared in v̂  = 0, the 

majority (> 80%) of product Ĥ Cv") ions are formed in v" = 0. The 

vibrational relaxation channel for forming (v" = 0) is found to be 

more efficient than the vibrational excitation for producing = 1) 

in the Ê \v̂  = 1) + (v|̂  = 0) charge transfer collisions. A better 

agreement between experiment and theoretical calculation is observed 

at E =16 eV. The discrepancy observed at E = 8 eV with v' = 1 
c.m. c.m. o 

might be due to the neglect of the + H channel in the theoretical 

study. 

A state-to-state study of the symmetric charge transfer reactions 
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+ 2 1 
Ar ( 1*2/2 I/t) Ŝ ) in the energy range of = 1-4000 eV has 

been performed. The kinetic energy dependence for the probability of 

2  2  + 2  1  
fine-structure transitions ( "̂ 212 ̂  \/2̂  in Ar ( + Ar( Ŝ ) 

charge transfer collisions is in general agreement with the theoretical 

prediction. However, the theoretical probabilities are 40% higher 

than the experimental values. The fine-structure effects on the charge 

transfer cross sections are found to diminish at both low and high 

collision energies, in accordance with the theoretical expectations. 

Taking into account the experimental uncertainties, the experimental 

results are consistent with detailed balance which requires the value 

for the state-to-state charge transfer cross sections ̂ 2_/2-»-3/2 

twice that for "̂ 3/2-̂ 1/2 collision energies substantially greater 

than the spin-orbit splitting of PjT. 

The experiments have demonstrated that the charge transfer de­

tection method is a highly sensitive method for measurements of final 

state distributions of charge transfer product ions. 
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